Quick Calculation 3.11

A First Course in String Theory

.

Since \displaystyle{G^{(D)} \rho_m} has the same unit in all dimensions,

\displaystyle{  \begin{aligned}    \left[ G^{(D)} {\rho_m}_D \right] &= \left[ G^{(D=4)} {\rho_m}_{D=4} \right] \\     \left[ G^{(D)} \right] \frac{M}{L^{D-1}} &=   \left[ G \right] \frac{M}{L^3}  \\       \left[ G^{(D)} \right] &=   \left[ G \right] L^{D-4}  \\     \end{aligned}  }

.

Eq. (3.104):

\displaystyle{  \begin{aligned}    [G] &= \frac{[c]^3 L^2}{[\hbar]} \\     \end{aligned}}

.

\displaystyle{\begin{aligned}      \left[ G^{(D)} \right] &= \frac{[c]^3 L^{D-2}}{[\hbar]}  \\       G^{(D)} &= \frac{c^3 \left(l_P^{(D)}\right)^{D-2}}{\hbar}  \\       \left(l_P^{(D)}\right)^{D-2} &= G^{(D)} \frac{\hbar}{c^3} \\           \end{aligned}}

.

\displaystyle{\begin{aligned}      \left(l_P^{(4)}\right)^{4-2} &= G^{(4)} \frac{\hbar}{c^3} \\     \left(l_P \right)^{2} &= G \frac{\hbar}{c^3} \\ \\    \left(l_P^{(D)}\right)^{D-2}   &= \left(l_P \right)^{2} \frac{G^{(D)}}{ G } \\  \\        \end{aligned}}

— Me@2022-07-17 04:23:42 PM

.

.

2022.07.17 Sunday (c) All rights reserved by ACHK