Probability 2.1

這段改編自 2010 年 5 月 25 日的對話。

假設你要由一副撲克牌中,抽四張牌出來,抽到兩張紅色和兩張黑色的機會率是多少?

已知整個過程是隨機的,即是各個可能結果的機會均等。

這一題有兩種運算方法。

第一種運算方法,我稱之為「機會率方法」,簡稱「P 」。

首先,假想有四個空格:

(_)(_)(_)(_)

然後,你要抽四張撲克牌出來,逐一填滿那四個空格。為簡便起見,我們暫時先把題目改為:抽到「頭兩張是紅色牌」和「尾兩張是黑色牌」的機會率是多少?

(紅)(紅)(黑)(黑)

接著,你可以考慮,第一張抽到紅牌的機會是多少。因為原本有 52 張牌給你抽,所以第一個分數的分母是 52。那 52 張牌中,有 26 張是你所要的紅色牌,所以第一個分數的分子是 26。結論是,第一個分數是 26/52。

(26/52)(紅)(黑)(黑)

到你抽第二張牌時,只剩下 51 張,所以第二個分母是 51。那 51 張牌中,有 25 張是紅色的,所以第二個分子是 25。

(26/52)(25/51)(黑)(黑)

如此類推,你亦可以得到餘下的兩個分數。

(26/52)(25/51)(26/50)(25/49)

但是,原本的題目並沒有規定四張之中,哪兩張是紅色的,所以,我們要乘 4C2 於剛才的那個中途答案之上,因為,四張之中放兩張紅色牌,共有 4C2 種放法。4C2 即是 「4 選 2」,等於 6。

(26/52)(25/51)(26/50)(25/49)4C2 = 0.3902

這個方法,是透過幾個「機會率分數」的相乘來獲得答案,所以,我稱之為「機會率方法 P」。

— Me@2012.01.25

2012.01.26 Thursday (c) All rights reserved by ACHK