Multinomial coefficient 2.3

二項式係數 4.3 | Binomial coefficient 4.3

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

(CYW:用你這個講法,我好像明白多了一點。但是,如果沿用我剛才的問法,我又確實感覺到,應該考慮「抽哪 4 個人去第一輛車」的不同次序。我暫時還未有信心,可以在考試時準確分辨,哪些時候需要考慮「次序」,哪些時候不需要。)

那就代表了,你仍然不太明白我的解答。或者,你先搞清楚,combination(組合)和 permutation(排列)的分別。

運算方面,毋須考慮次序的,就為之「組合」,公式是「nCr」;必須考慮次序的,就為之「排列」,公式是「nPr」。

而真正困難的,是在運算之前,要準確分辨,需要考慮次序,還是不需要。你只要利用正常的智力,一般的常識,再加上「組合」和「排列」這兩個詞語的輔助,就可以清晰劃分。

意思是,凡是題目明示或者暗示,尋找「組合」數目的,就毋須考慮,各個組合內部的次序,因為那是「組合」這個詞語的意思。例如,假設那 10 人是「ABCDE FGHIJ」,要分成兩隊「音樂組合」,簡稱「樂隊」。如果第一隊有 4 人,第二隊有 6 人,總共有多少個分配隊員方法?

換而言之,從 10 人中抽 4 人出來,組成第一隊樂隊,總共有多少個抽法呢?

在這個情況下,次序很明顯不重要。試想想,假設你從那 10 人中,抽了「ABCE」4 人出來。無論抽的先後次序是「ABCE」,還是「ACBE」,他們所組成樂隊都會「一樣」。兩個情況所組成的音樂組合,你都會視為「同一隊」樂隊。

— Me@2013.07.04

2013.07.04 Thursday (c) All rights reserved by ACHK