Multinomial coefficient 2.4

二項式係數 4.4 | Binomial coefficient 4.4

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

換而言之,從 10 人中抽 4 人出來,組成第一隊樂隊,總共有多少個抽法呢?

在這個情況下,次序很明顯不重要。試想想,假設你從那 10 人中,抽了「ABCE」4 人出來。無論抽的先後次序是「ABCE」,還是「ACBE」,他們所組成樂隊都會「一樣」。兩個情況所組成的音樂組合,你都會視之為「同一隊」樂隊。

但是,如果問題改為:

從 10 人中抽 4 人出來,去參加一個音樂比賽,而沒有其他參賽者的話,總共有多少個可能的比賽排名結果呢?

那樣,被抽了出來的那 4 個人中,不同的人拿冠軍,為之不同的排名,不同的結果。所以,次序需要考慮。運算方面,詳細的版本是:

首先,考慮有「冠、亞、季、殿」軍 4 個空格:

(_)(_)(_)(_)

因為冠軍寶座有 10 個可能的奪得者,所以,第一格是 10:

(10)(_)(_)(_)

其中 1 人奪得冠軍後,亞軍還有 9 個可能的領獎人士:

(10)(9)(_)(_)

如此類推的話,我們就可以推斷到,總共有 5040 個可能的比賽結果:

(10)(9)(8)(7)

= 5040

精簡的版本則是:

題目明確地問,有多少個可能的比賽排名。所以,題目所問的,就相當於:

從 10 人中抽 4 人出來,而次序重要的話,總共有多少個抽法呢?

那是 permutation(排列)。答案明顯是 10_P_4,即是「10 排 4」,等於 5040。

10_P_4 =

10!
——-
(10-4)!

結論是,總共有 5040 個可能的比賽排名。

— Me@2013.07.08

2013.07.08 Monday (c) All rights reserved by ACHK