nCr, 2

這段改編自 2014 年 3 月 22 日的對話。

假設有 7 蘋果,你要選 3 個出來,總共有多少個選法?

(A:我大概明白你的解釋。但是,情感上,我仍然接受不到,「7 選 3」和「7 選完 2 後再選 1」,的確有所不同。)

如果你堅持要把「7 選 3」,看成「7 選完 2 後再選 1」,而又要得到正確答案的話,你可以用 nPr 的方法。

「nPr」即是「n 排 r」—— 如果有 n 個物件,選 r 出來排隊,總共有多少個排列方法?

例如,由 7 個蘋果之中,選 3 個蘋果出來,總共就有 7P3,即是 210 個排法。

但是,題目要的是「組合」,不是「排列」。亦即是話,題目只重視,如果 7 個蘋果之中購買 3 個,有多少個選擇方法,而購買的次序並不重要。

換句話說,被選的 3 個蘋果的內部次序,不予考慮。所以,你應該把 7P3 除以(3!),才可以把「排列」翻譯成「組合」,得到正確的答案:

7P3/(3!)

= 210/6

= 35

這個答案,和 7C3 的結果相同。

你剛才說,你很想把「7 選 3」,看成「7 選完 2 後再選 1」。你可以這樣做:

首先,由 7 個蘋果之中,選兩個出來排隊。

7P2

然後,再由餘下的 5 個蘋果之中,選 1 個出來排隊。

(7P2)(5P1)

最後,就把次序因素刪除。

(7P2)(5P1)/(3!)

= 35

你都會得到 35。

總括而言,「7P3/(3!)」、「7P2 x 5P1/(3!)」和「7C3」都是正確的,等如 35。而「7C2 x 5C1」則等如 105,不是正確的。

(A: 為何把「7P3」拆成「7P2 x 5P1」就可以,而把「7C3」拆成「7C2 x 5C1」就錯誤?)

如果要變成正確,你就要把「7C2 x 5C1」除以 3。「7C2 x 5C1/3」都會等如 35。為何要把「7C2 x 5C1」除以 3,才會得到正確答案呢?

亦即是話,在這裡,「除以 3」的實際意思,又是什麼呢?

— Me@2014.04.05

2014.04.06 Sunday (c) All rights reserved by ACHK