速度準確表達

人格考試 1.2 | 學科用處

這段改編自 2010 年 6 月 29 日的對話。

這些都要靠平日,長年累月的習慣訓練,導致考試時可以條件反射;並沒有任何直接的「溫習」方法,可以「溫習人格」。換而言之,考試是兩分考學問,八分考能力。如果你只是「知識多」但是「能力差」,考試不會有好結果。

「速度」、「準確度」和「語言」這三項性格特點,其實是同一樣東西的三個方面,而不是三樣各自獨立的東西。例如,如果你運算不準確,就即是花了時間,也拿不到分數。得分效率等如零,沒有任何速度可言。又例如,如果你的語言表達欠佳,閱卷員不能明白你的思想,那就等價於你的作答不準確。你亦會損失大量分數。

這三樣處事效能,統稱為「人格」;「人格」就那「同一樣東西」。

有了「人格考試」這個概念後,你不應該再投訴,中學的學術科目,對你沒有用處;你亦不應該再追問,既然數學科中所學的數學,在日常生活中甚少應用,為什麼我們要花那麼多的時間去學呢?

其實,數學科中的數學,只佔整個「數學科」課程目標的兩成。其餘的八成,都是考驗你的人格。你大概不能說,「人格」不會在日常生活中應用到。

— Me@2013.05.11

2013.05.11 Saturday (c) All rights reserved by ACHK

Terence Tao 1

A powerful way to prove a mathematical result (e.g. an identity of the form A=B) is to introduce a new object or concept (say C) and connect it in two different ways to the original problem. For instance, if one can show that A=C and one can also show that C=B, then one can deduce that A=B. More generally, one can introduce n new objects or concepts, and establish at least n+1 non-trivial connections between these objects and each other, or to the original problem; for instance, if one introduces two new objects C,D and three connections, two of which A=C, D=B are to the original problem, and one of which C=D is between the newly introduced objects, then one has again established A=B.

A typical example of this is the use of complex analysis methods to solve a real analysis problem, as per Hadamard’s famous dictum “The shortest path between two truths in the real domain passes through the complex domain”. For instance, suppose one wants to compute some real integral A and show that it equals some value B. To do this, one can introduce two new concepts (the complex contour integral C, and the notion of a residue of a pole D); write the real integral as a contour integral (establishing a result of the form A=C), invoke the residue theorem (which is a result of the form C=D), and then compute the residues (a result of the form D=B), to obtain the final desired result A=B.

— Terence Tao

2013.05.11 Saturday ACHK