Structure and Interpretation of Classical Mechanics
.
b. Use your delta procedure to verify the properties of listed in exercise 1.7 for simple functions such as implemented by the procedure
f:
(define (f q)
(compose
(literal-function ’F
(-> (UP Real (UP* Real) (UP* Real)) Real))
(Gamma q)))
This implements an n-degree-of-freedom path-dependent function that depends on the local tuple of the path at each moment. You can define a literal two-dimensional path by
(define q (literal-function ’q (-> Real (UP Real Real))))
You should compute both sides of the equalities and subtract the results. The answer should be zero.
~~~
(define (((delta eta) f) q)
(define (g epsilon)
(f (+ q (* epsilon eta))))
((D g) 0))
(define (f q)
(compose (literal-function 'f (-> (UP Real Real Real) Real))
(Gamma q)))
(define eta (literal-function 'eta))
(define q (literal-function 'q))
(print-expression ((((delta eta) f) q) 't))
— Patrick Eli Catach
.
(print-expression ((((delta eta) f) q) 't))
(+ (* ((D eta) t) (((partial 2) f) (up t (q t) ((D q) t)))) (* (eta t) (((partial 1) f) (up t (q t) ((D q) t)))))
(show-expression ((((delta eta) f) q) 't))

— Me@2020-04-11 12:01:04 PM
.
.
2020.04.11 Saturday (c) All rights reserved by ACHK
You must be logged in to post a comment.