Ex 1.29 A particle of mass m slides off a horizontal cylinder, 2.1

Structure and Interpretation of Classical Mechanics

.

A particle of mass m slides off a horizontal cylinder of radius R in a uniform gravitational field with acceleration g. If the particle starts close to the top of the cylinder with zero initial speed, with what angular velocity does it leave the cylinder?

~~~

.

Kinetic energy:

\displaystyle{\begin{aligned}          T(r(t), \theta(t))     &= \frac{1}{2} m \left( v_x^2 + v_y^2 \right) \\         &= \frac{1}{2} m \left[ \left( \frac{d}{dt} r \sin \theta \right)^2 + \left( \frac{d}{dt} r \cos \theta \right)^2 \right] \\         &= \frac{1}{2} m \left[     \left( \dot r \sin \theta + r \dot \theta \cos \theta \right)^2   + \left( \dot r \cos \theta - r \dot \theta \sin \theta \right)^2   \right] \\         &= \frac{1}{2} m \left[ \dot r^2 + r^2 \dot \theta^2  \right] \\           \end{aligned}}

Potential energy:

\displaystyle{\begin{aligned}          V(r(t), \theta(t)) &= mgr \cos \theta \\        \end{aligned}}

Constraint:

\displaystyle{\begin{aligned}          \phi(t) &= r(t) - R \\         &= 0 \\        \end{aligned}}

.

The Lagrangian:

\displaystyle{\begin{aligned}          L(r(t), \theta(t)) &= T - V + \lambda \phi \\    &= \frac{1}{2} m ( \dot r^2 + r^2 \dot \theta^2 ) - mg r \cos \theta + \lambda (r - R) \\      \end{aligned}}

The Lagrange equations:

\displaystyle{ \begin{aligned}     \frac{d}{dt} \left( \frac{\partial L}{\partial \dot r} \right) - \frac{\partial L}{\partial r} &= 0 \\     \frac{d}{dt} \left( \frac{\partial L}{\partial \dot \theta} \right) - \frac{\partial L}{\partial \theta} &= 0 \\     \frac{d}{dt} \left( \frac{\partial L}{\partial \dot \lambda} \right) - \frac{\partial L}{\partial \lambda} &= 0 \\     \end{aligned}}

.

\displaystyle{ \begin{aligned}     \frac{d}{dt} \left( \frac{\partial L}{\partial \dot r} \right) - \frac{\partial L}{\partial r} &= 0 \\     \frac{d}{dt} m \dot r - \left( m r \dot \theta^2 - mg \cos \theta + \lambda \right) &= 0 \\     m \ddot r &= m r \dot \theta^2 - mg \cos \theta + \lambda   \\     \end{aligned}}

.

\displaystyle{ \begin{aligned}     \frac{d}{dt} \left( \frac{\partial L}{\partial \dot \theta} \right) - \frac{\partial L}{\partial \theta} &= 0 \\     \frac{d}{dt} \left( m r^2 \dot \theta \right) - mgr \sin \theta &= 0 \\     m \left( 2 r \dot r \dot \theta + r^2 \ddot \theta \right) - mgr \sin \theta &= 0 \\     \end{aligned}}

.

\displaystyle{ \begin{aligned}     \frac{d}{dt} \left( \frac{\partial L}{\partial \dot \lambda} \right) - \frac{\partial L}{\partial \lambda} &= 0 \\     - ( r - R ) &= 0 \\     r(t) &= R \\     \end{aligned}}

.

By the constraint \displaystyle{r(t) = R},

\displaystyle{ \begin{aligned}   \dot r(t) &= 0 \\   \ddot r(t) &= 0 \\   \end{aligned}}

— Me@2023-06-25 07:47:21 PM

.

.

2023.06.28 Wednesday (c) All rights reserved by ACHK