3 Vector Fields and One-Form Fields, 1

Chain Rule of Differentiation, 2

Functional Differential Geometry

.

p. 21

1.

In multiple dimensions the derivative of a function is the multiplier for the best linear approximation of the function at each argument point:

\displaystyle{f(x + \Delta x) \approx f(x) +  (Df(x)) \Delta x}

In other words:

\displaystyle{  \begin{aligned}  f(x + \Delta x) &= f(x) + a_1 (\Delta x) + a_2 (\Delta x)^2 + \cdots \\   (Df(x)) &= a_1 \\   \end{aligned}  }

2.

The derivative Df(x) is independent of \Delta x.

3.

… the product \displaystyle{(Df(x))\Delta x} is invariant under change of coordinates …

4.

\displaystyle{(Df(x)) \Delta x} is the directional derivative of \displaystyle{f} at \displaystyle{x} with respect to \displaystyle{\Delta x}.

5.

\displaystyle{(Df(x)) b(x) \ne (Df(x)) \Delta x}

Instead, \displaystyle{(Df(x)) b(x)} is a generalization of \displaystyle{(Df(x)) \Delta x}.

— Me@2023-09-29 11:48:36 PM

.

.

2023.09.30 Saturday (c) All rights reserved by ACHK