馬和小孩, 2

這段改編自 2021 年 12 月 17 日的對話。

.

人的內置系統,即是先天而言,在愛情上是從一而終的。或者說,任何高等生物,都應該是那樣。

覺得「有外遇」沒有問題的人,是假設了雖然自己可以有外遇,但是太太卻不可以。

如果遊戲規則是,你有多少個外遇,太太亦會有多少個的話,大概沒有人會願意。

比喻說,如果有一個城市甲,政府考慮「應否把偷竊搶刧合法化」時,只給市民兩個選項:

要麼全民也可以偷搶,要麼全民也不可以。

那樣,大部人也會寧願,全民也不可以。

即使法津容許我,取他人之物,我也不可能持有,因為,他人也可以任意,偷搶我的東西。

— Me@2025-06-25 03:44:26 PM

.

.

2025.06.28 Saturday (c) All rights reserved by ACHK

Euler problem 28.1

(defun e-28 ()
  (+ 1 (loop :for n :from 3 :to 1001 :by 2
             :sum (+ (* 4 (expt (- n 2) 2))
                     (* 10 (- n 1))))))

CL-USER> (e-28)
669171001

— Me@2025-06-13 11:01:45 PM

.

.

2025.06.15 Sunday (c) All rights reserved by ACHK

Ex 1.33 Properties of E

Understanding the Euler-Lagrange Operator

.

Let \displaystyle{F} and \displaystyle{G} be two Lagrangian-like functions of a local tuple, \displaystyle{C} be a local-tuple transformation function, and \displaystyle{c} a constant.

Demonstrate the following properties:

a. \displaystyle{E[F + G] = E[F] + E[G]}

d. \displaystyle{\mathcal{E}[F \circ C] = D_t (DF \circ C) \partial_2 C + DF \circ C \mathcal{E}[C]}

~~~

Eq. (1.167):

\displaystyle{\bar \Gamma (\bar f) (t, q, v, \dots) = \bar f [\mathcal{O} (t,q,v, \dots)](t)}

Eq. (1.174):

\displaystyle{E[L] = D_t \partial_2 L - \partial_1 L}

.

\displaystyle{  \begin{aligned}  E[L] &= D_t \partial_2 L - \partial_1 L \\   E[F+G] &= D_t \left( \partial_2 (F+G) \right) - \partial_1 (F+G) \\   &= D_t \left( \partial_2 F+\partial_2 G \right) - (\partial_1 F+ \partial_1 G) \\   &= D_t \partial_2 F+D_t \partial_2 G - (\partial_1 F+ \partial_1 G) \\  &= D_t \partial_2 F- \partial_1 F +D_t \partial_2 G - \partial_1 G \\   &= E[F] + E[G] \\  \end{aligned}  }

— Me@2025-05-30 03:40:41 PM

.

The Problem

\displaystyle{  \begin{aligned}  &E[F \circ C] (t,q,v,\dots) \\   &= (D_t \partial_2 (F \circ C) - \partial_1 (F \circ C)) (t,q,v,\dots)\\     &= (D_t \partial_2 (F (C(t,q,v,\dots))) - \partial_1 (F(C(t,q,v,\dots)))) \\     \end{aligned}  }

Prove that

\displaystyle{\mathcal{E}[F \circ C] = D_t (DF \circ C) \partial_2 C + DF \circ C \mathcal{E}[C]}


Key Terms Explained

  • Local Tuple: Think of this as a snapshot of a system’s state along a path. It includes:
    • \displaystyle{ t }: time,
    • \displaystyle{ q }: generalized coordinate (e.g., position),
    • \displaystyle{ v = \frac{dq}{dt} }: velocity,
    • and possibly higher derivatives like acceleration. We’ll use \displaystyle{ \eta = (t, q, v) } for simplicity.
  • Lagrangian-like Function \displaystyle{ F }: A scalar function of the local tuple, such as \displaystyle{ F(t, q, v) }, akin to a Lagrangian in mechanics.
  • Local-Tuple Transformation \displaystyle{ C }: A function that maps one local tuple to another. For example, \displaystyle{ C(\eta) = (t, C_q(t, q, v), C_v(t, q, v)) }, where \displaystyle{ C_q } and \displaystyle{ C_v } transform the coordinate and velocity.
  • Composition \displaystyle{ F \circ C }: This is \displaystyle{ F } evaluated at the transformed tuple: \displaystyle{ (F \circ C)(\eta) = F(t, C_q(t, q, v), C_v(t, q, v)) }.
  • Euler-Lagrange Operator \displaystyle{ E }: For a function \displaystyle{ G(t, q, v) }, it’s defined as:
    \displaystyle{ E[G] = \frac{\partial G}{\partial q} - D_t \left( \frac{\partial G}{\partial v} \right) }
    This operator extracts the equations of motion when applied to a Lagrangian.
  • Total Time Derivative \displaystyle{ D_t }: This accounts for how a function changes over time, considering all variables. For \displaystyle{ h(t, q, v) }:
    \displaystyle{ D_t h = \frac{\partial h}{\partial t} + v \frac{\partial h}{\partial q} + a \frac{\partial h}{\partial v} }
    where \displaystyle{ a = \frac{dv}{dt} } is acceleration.
  • Derivative \displaystyle{ DF }: The derivative of \displaystyle{ F } with respect to its spatial arguments, typically \displaystyle{ DF = \left( \frac{\partial F}{\partial q}, \frac{\partial F}{\partial v} \right) }.

— Me@2025-05-31 01:32:05 PM

.

.

2025.06.03 Tuesday (c) All rights reserved by ACHK