快樂之道

Gradually I learned to be indifferent to myself and my deficiencies;

I came to centre my attention increasingly upon external objects:

the state of the world,

various branches of knowledge,

individuals for whom I felt affection.

– Bertrand Russell’s The Conquest of Happiness p.14

— Me@2009.04.28

2011.05.20 Friday ACHK

小學生傳奇 1.3

(安:我的目的就是,要帶出我的論點,令到他人明白。)

我不是指,你當時的目的是什麼。我是指,你描述這個情況給我聽,是想帶出什麼問題,或者解決什麼問題?

(安:問題就是,我表達完一些東西之後,發現效果和「沒有表達過」沒有分別,覺得十分浪費時間。)

那會構成什麼實質的問題?例如,會不會因為你上司沒有能力理解你的解說,而導致他扣減你的薪金?

(安:那又不會。)

那就即是不是實質問題,而只不過是你不開心。如果不是不開心的話,就是你心裡不舒服。又或者,你感到很困惑:為什麼地球人會愚昧到那個程度呢?

其實,我已經一早 transcend (看破)了這個疑惑。

— Me@2011.05.20

2011.05.20 Friday (c) All rights reserved by ACHK

Negative probability

In 1942, Paul Dirac wrote a paper: “The Physical Interpretation of Quantum Mechanics” where he introduced the concept of negative energies and negative probabilities:

    “Negative energies and probabilities should not be considered as nonsense. They are well-defined concepts mathematically, like a negative of money.”

Negative probabilities have later been suggested to solve several problems and paradoxes. Half-coins provide simple examples for negative probabilities. These strange coins were introduced in 2005 by Gabor J. Szekely. Half-coins have infinitely many sides numbered with 0,1,2,… and the positive even numbers are taken with negative probabilities. Two half-coins make a complete coin in the sense that if we flip two half-coins then the sum of the outcomes is 0 or 1 with probability 1/2 as if we simply flipped a fair coin.

— Wikipedia on Negative probability

2011.05.19 Thursday ACHK

微積分 2

這段改編自 2010 年 5 月 1 日的對話。

留意,我只是說做了一個「不定積分」(indefinite integration)後,你可以對答案式子做一次「微分」(differentiation),看看是否得回題目的式子。是的話,你答案正確的機會就十分高。

但是,我從來沒有說過,你做了一題「微分」題目後,可以透過對答案做一次「不定積分」,以作驗算。那是不行的。

「微分」是機械程序,「不定積分」不是。「微分」比「不定積分」簡單容易很多。所以,你應該用「微分」來驗算「不定積分」題目,而不應該用「不定積分」來校對「微分」題目。

如果要驗算「微分」題目的話,你要用其他方法。其中一個方法是,用一部有「微積分」功能,而又被考試局認可的計數機。

— Me@2011.05.18

2011.05.18 Wednesday (c) All rights reserved by ACHK

From Heisenberg to Godel

My student Mike Stay did computer science before he came to UCR. When he was applying, he mentioned a result he helped prove, which relates Godel’s theorem to the Heisenberg uncertainty principle:

2) C. S. Calude and M. A. Stay, From Heisenberg to Godel via Chaitin, International Journal of Theoretical Physics, 44 (2005), 1053-1065. …

Now, this particular combination of topics is classic crackpot fodder. People think “Gee, uncertainty sounds like incompleteness, they’re both limitations on knowledge – they must be related!” and go off the deep end. So I got pretty suspicious until I read his paper and saw it was CORRECT… at which point I definitely wanted him around! The connection they establish is not as precise as I’d like, but it’s solid math.

— This Week’s Finds in Mathematical Physics (Week 230)

— John Baez

2011.05.18 Wednesday ACHK

嘗試出現

I long ago stopped worrying about the competition that never showed up. Half of life is showing up. I did.

— John T. Reed

Half of what you need to do is just showing up.

— Me@2009.12.02

你有一半的人生,來自「嘗試」或「出現」。不敢「嘗試」,或者不肯「出現」,會令你損失半個人生。

— Me@2011.05.17

2011.05.17 Tuesday (c) All rights reserved by ACHK

小學生傳奇 1.2

那樣,對你的應世,構成什麼實際的問題?

(安:我越來越多面對的一個情況是,一些很淺顯明白的道理,其他人不知道,或者是不明白。於是,我會用我所能想像,最好的表達方式去跟他們講解一次,令到那個原本就淺顯明白的道理,更加淺顯明白。但是,結果,他們往往是不認同。

而我遇過的一些極端的情形是,聽者不單是對我的論點不認同,而且他們的表現,令我覺得,彷彿我從來沒有跟他們說過話似的。他們對我論點的理解,沒有絲毫進步。)

你因而覺得不開心?

(安:我不是覺得不開心。)

那樣,你的目的是什麼?

(安:我的目的就是,要帶出我的論點,令到他人明白。)

我不是指,你當時的目的是什麼。我是指,你描述這個情況給我聽,是想帶出什麼問題,或者解決什麼問題?

— Me@2011.05.17

2011.05.17 Tuesday (c) All rights reserved by ACHK

Backdoor (computing)

David A. Wheeler has proposed a counter to this attack using an approach he calls “diverse double-compiling”, which uses techniques adapted from compiler bootstrapping. This involves re-compiling the source of the compiler through another independently-written and generated “trusted” compiler, and then using the binary generated from this to recompile the original compiler again, and then comparing the binary generated from this second compilation with that generated from using the original compiler to recompile itself directly.

— Wikipedia on Backdoor (computing)

2011.05.16 Monday ACHK

小學生傳奇 1.1

(安:那我修改我的講法。最近發現,有一部分位高權重的管理人員,智力已經退化到,連小學生都不如。)

那有什麼出奇呢?

(安:一點也不出奇。但是,我發覺那是對我來說,一個很大的應世問題。)

為什麼呢?

(安:如果我要應付那些人呢,我就要時常思考,究竟要用什麼表達方式,才可以令到他們接受我的意見。

但是,如果是面對理性的人,我根本毋須考慮什麼「表達方式」。真正重要的是,我的意見本身要正確。只要我列舉證據,理性的人就自然會認同。換言之,理性的人會被「事實」說服,而不是被「人」說服。所以,他們不會重視,道出那個事實的人,究竟用什麼表達方式。

但是,我發現一大部分人也不是那樣的。)

那樣,對你的應世,構成什麼實際的問題?

— Me@2011.05.12

2011.05.12 Thursday (c) All rights reserved by ACHK

A Fraction of Algebra

As a mathematician there is a story I hear a lot. It tends to come up whenever I tell someone what I do for the first time, and they admit that they don’t really like, or aren’t very good at, mathematics. In almost every case, if I bother to ask (and these days I usually do), I find that the person, once upon a time, was good at and liked mathematics, but somewhere along the way they had a bad teacher, or struck a subject they couldn’t grasp at first, and fell a bit behind. From that point on their experiences of mathematics is a tale of woe: because mathematics piles layer upon layer, if you fall behind then you find yourself in a never ending game of catch-up, chasing a horizon that you never seem to reach; that can be very dispiriting and depressing.

— The Narrow Road, Zen and the Art of Mathematics

2011.05.12 Thursday ACHK

Spinors

Twistors are closely related to spinors, objects that may be understood as “square roots of vectors”. I like to say that twistors may similarly be interpreted as “square roots of spacetime points”.

Witten enters the scene

In 2003, Edward Witten published his papers on the twistor treatment of the maximally supersymmetric Yang-Mills theory in four dimensions. For the first time, geometry in the twistor space was used to calculate scattering amplitudes – quantities knowing about some real dynamics and interactions in physics.

— Lubos Motl

2011.05.11 Wednesday ACHK

倒轉步驟按

這段改編自 2010 年 5 月 1 日的對話。

考試時,大部分考生即使懂做題目,往往會因為按計數機時按錯按鍵,導致損失大量的答案分。

(CSK:我時常都是那樣的。)

(CKY:我會按完以後,立刻重新再按一次,以作檢查。)

你可以試試用我的方法:第一次按完後,你會得到一個答案。在第二次按時,利用那個答案倒轉步驟按,看看能否得回題目的數字。

例如,題目是「1.831 x 6.234 = ?」假設第一次按時,你按到 11.41。第二次按時,你可以試試按「11.41 除以 6.234」,看看是否等如題目的 1.831。

即使是特別複雜的運算,「倒轉步驟按」其實也很容易簡單。

例如,題目是 。假設第一次按時,你按到 1.077。第二次按時,你可以試試按 ,看看是否等如題目的

「重新用原本的方法按一次」的不好處是,如果你第一次按錯了,你有機會在第二次按時,在同一個步驟按錯。而「倒轉步驟按」就正正防範了這個問題。一個錯的答案,通過「倒轉步驟按」,可以和題目數字吻合的機會微乎其微。

如果你在第一次按時的答案是錯的,而利用那個錯的答案,在「倒轉步驟按」時,你竟然可以得回題目的數字,導致你誤以為那個答案是對的話,那就即是天意:命中注定你要錯那一題。

— Me@2011.05.15

2011.05.15 Sunday (c) All rights reserved by ACHK

The Cosmic Superconductor

The success of the electroweak sector of the standard model teaches us that what we perceive as empty space is in reality a cosmic superconductor – not, of course, for electromagnetic fields and currents, but for the currents that couple to W and Z bosons.

— Anticipating a New Golden Age

— Frank Wilczek

2011.05.10 Tuesday ACHK

高中年代

(安:最近發現,有一部分位高權重的管理人員,智力已經退化到,連中學生都不如。)

不要拿中學生相比。我覺得,中學生是社會上最聰明的人。一方面,他們的腦袋還年輕。另一方面,他們還肯虛心受教,吸收新知識。或者這樣說,回顧我自己的經驗,高中年代是我腦袋最靈活的時期。

(安:那我修改我的講法。最近發現,有一部分位高權重的管理人員,智力已經退化到,連小學生都不如。)

— Me@2011.05.09

2011.05.09 Monday (c) All rights reserved by ACHK