Englert–Greenberger duality relation

The Englert–Greenberger duality relation relates the visibility, V, of interference fringes with the definiteness, or distinguishability, D, of the photons’ paths in quantum optics. As an inequality:

    D^2 + V^2 <= 1 

The relationship was first experimentally shown by Greenberger and Yassin in 1988. It was later theoretically derived by Jaeger, Shimony, and Vaidman in 1995, and over a year later it was also mentioned by Englert, in 1996.

— Wikipedia on Englert–Greenberger duality relation

2012.04.11 Wednesday ACHK

Meta 3

… the people who made money from the gold rush were not the gold miners. It was guys named Levi Strauss and Crocker, and folks who ran banks, and people who sold jeans, and sold picks and axes.

I think ultimately in the long term that the money that will get made in Minecraft will not be about Minecraft, but will be about the services and products that get introduced into it. And so that’s what’s most interesting to me about Minecraft, is that the ecosystem, it’s almost an American history lesson.

— Rich Hilleman

— Getting EA Ready for the Future

— Brandon Sheffield

— Gamasutra

2012.04.11 Wednesday ACHK

Probability 3.2

這段改編自 2010 年 6 月 2 日的對話。

15 個錢幣之中,有 3 個是金的。假設你要由那 15 個錢幣之中,抽 4 個出來,抽到 3 個金幣的機會率是多少?

已知整個過程是隨機的,即是抽中各個錢幣的機會均等。

這一題有兩種運算方法。

第二種運算方法,我稱之為「統計學方法」,簡稱「S」。

這個方法,是直接用一個分數,來獲得答案。

(_)
(  )

首先,你要想像,總共有多少個抽法:

15 個錢幣中抽 4 個,共有 15_C_4 種抽法,所以分母是 15_C_4。

(___ )
(15_C_4)

15_C_4 即是 「15 選 4」,等於 1365。

然後,你再想一想,在這 1365 個可能之中,有多少個是你想要的結果(其中三個金):

第一,你要巧合地從那 3 個金幣之中,抽到全部 3 個出來。那共有 3_C_3 種抽法。

第二,你要幸運地從那 12 個非金幣之中,抽到 1 個出來。那共有 12_C_1 個可能性。

所以,分子是〔(3_C_3)(12_C_1)〕。

(3_C_3)(12_C_1)
__________ = 0.008791
        (15_C_4)

這個方法,是透過幾個「點算數目」來獲得答案,所以,我稱之為「統計學方法 S」。

「點算數目」的意思是,點算有多少個可能的結果,放在分母;然後,再點算眾多可能結果之中,有多少個是你想要的,放在分子。那樣,整個運算過程中,就不會出現多過一個分數。

因為「P 方法」和「S 方法」貌似截然不同,你幾乎沒有可能,錯在同一個地方。如果你用齊這兩個方法,都「竟然」計到同一個答案,你錯的機會就微乎其微。

據我現時所知,同時用 P、S 方法,不單是驗算機會率題目的最佳方法,而且是唯一方法。

機會率題目的好處是,如果你想得通,運算的步驟極少。即使你每一題機會率題目,也同時用這兩個方法運算,也不會花你太多時間。

— Me@2012.04.11

2012.04.11 Wednesday (c) All rights reserved by ACHK