Conscious time

Cumulative concept of time, 15

In 1895, in his novel, The Time Machine, H.G. Wells wrote, “There is no difference between time and any of the three dimensions of space except that our consciousness moves along it.”

— Wikipedia on Spacetime

Consciousness “moves” from the past to the future because consciousness is a kind of reflection.

To be conscious, one has to access its own states. But only the past states are available. Accessing one’s own now-here state is logically impossible, because that creates a metadox (paradox).

— Me@2013-06-26 02:28:51 PM

We can remember the past but not the future because the past is part of the future; the whole contains its parts, but not vice versa.

— Me@2011.08.21

2013.06.29 Saturday (c) All rights reserved by ACHK

Multinomial coefficient 2.1

二項式係數 4.1 | Binomial coefficient 4.1

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

你只要用二項式係數(binomial coefficient),就可以立刻知道答案。題目所問的,就相當於

如果要從那 10 人之中,抽 4 個出來(去乘坐第一輛車),總共有多少種抽法?

答案明顯是 10_C_4,即是「10 選 4」,等於 210。結論是,總共有 210 個可能的分配方法。

10_C_4 =

(10!)
——–
(4!)(6!)

另一個看法是,你直接把這題看成「分組問題」,用「多項式係數」(multinomial coefficient)去運算。

總共有 10 個人,所以分子是 (10!):

(10!)
——–
(__)

總共有兩組,所以分母有兩個因子:

(10!)
——–
(_)(_)

第一組有 4 個人,所以第一個因子是 (4!):

(10!)
——–
(4!)(_)

第二組有 6 個人,所以第二個因子是 (6!):

(10!)
——–
(4!)(6!)

結論同樣是,如果第一輛車載 4 名乘客,而第二輛車載 6 名,總共就有 210 個,可能的分配乘客方法。

(CYW:但是,我覺得應該不止有 210 個可能性,因為抽某 4 個人出來時,本身有很多個抽法。假設「甲、乙、丙、丁」四人被抽中,去乘坐第一輛車,「先抽甲出來」和「先抽乙出來」,就已經是兩個不同的可能性。我不太明白,為什麼毋須考慮這一點?)

— Me@2013.06.29

2013.06.29 Saturday (c) All rights reserved by ACHK