Each of the logics is analytic.
“Which logic is the best for describing the world” is synthetic.
— Me@2012-04-14 11:32:36 AM
.
.
2018.04.22 Sunday (c) All rights reserved by ACHK
Each of the logics is analytic.
“Which logic is the best for describing the world” is synthetic.
— Me@2012-04-14 11:32:36 AM
.
.
2018.04.22 Sunday (c) All rights reserved by ACHK
The most valuable insights are both general and surprising. F = ma for example. But general and surprising is a hard combination to achieve. That territory tends to be picked clean, precisely because those insights are so valuable.
…
Because these start out so general, you only need a small delta of novelty to produce a useful insight.
A small delta of novelty is all you’ll be able to get most of the time. Which means if you take this route your ideas will seem a lot like ones that already exist. Sometimes you’ll find you’ve merely rediscovered an idea that did already exist. But don’t be discouraged. Remember the huge multiplier that kicks in when you do manage to think of something even a little new.
…
It’s not true that there’s nothing new under the sun. There are some domains where there’s almost nothing new. But there’s a big difference between nothing and almost nothing, when it’s multiplied by the area under the sun.
— General and Surprising
— Paul Graham
.
.
2018.04.22 Sunday ACHK
…
但是,未來時間是否無限長?
或者說,宇宙的壽命,是否無限呢?
.
可以參考的數據有:
宇宙現在的年齡,大概是只有十三億年() 。
.
(問:那和宇宙壽命有無限,沒有直接關係。)
.
無錯。但那可以凸顯 是多麼的大。
大概是,宇宙現時年齡的
倍。
.
另外,即使假設了宇宙本身是,永在不滅的,你仍然可追問,物質粒子的壽命,又是否無限呢?
暫時,物理學家仍不知道,質子的壽命是否有限。
他們根據一些理論運算和實驗結果,估計質子壽命,大概有 至
年。但那仍然小於
很多很多。
.
(問:「宇宙」這個詞語的定義是「一切」。我們現時以為的「宇宙」,未必是真正的「宇宙」,因為,我們已知的「一切」,並非必定是,真正的「一切」。真正的「宇宙」,真正的「一切」,應連未知的部分,也包括在內。
所以,可能,真正宇宙的年齡,遠大於十三億年;可能,「 年」對於真正宇宙來說,仍然是微不足道。)
無錯。未知永比已知多。而正正是這個理由,你既不可以假設,宇宙保證永在,亦不可以假設,宇宙必定有盡。
所以,「機遇再生論」的兩大假設的第一個——宇宙永在,並非必為正確(,除非你還有,額外的理據)。
「機遇再生論」有兩大(潛)假設:
1. 宇宙,有無限長的未來。
(這對應於撲克比喻中,「可以洗牌無限次」的假設。)
2. 宇宙中的粒子數目有限;而它們的組合及排列數目,都是有限的。
(這對應於撲克比喻中,「只有 52 隻牌」和「只有有限個排列」(
)的假設。)
「機遇再生論」的第二個假設,同第一個假設一樣,都是疑點重重。
…
— Me@2018-04-22 02:48:21 PM
.
.
2018.04.22 Sunday (c) All rights reserved by ACHK