Van der Waals equation 1.1

Why do we add, and not subtract, the correction term for pressure in [Van der Waals] equation?

Since the pressure of real gases is lesser than the pressure exerted by (imaginary) ideal gases, shouldn’t we subtract some correction term to account for the decrease in pressure?

I mean, that’s what we have done for the volume correction: Subtracted a correction term from the volume of the container V since the total volume available for movement is reduced.

asked Sep 30 ’16 at 15:20
Ram Bharadwaj

— Physics Stackexchange

.

Ideal gas law:

P_{\text{ideal}} V_{\text{ideal}} = nRT

However, since in a real gas, there are attractions between molecules, so the measured value of pressure P is smaller than that in an ideal gas:

P_{\text{measured}} = P_{\text{real}}

P_{\text{measured}} < P_{\text{ideal gas}}

Also, since the gas molecules themselves occupy some space, the measured value of the volume V is bigger that the real gas really has:

V_{\text{measured}} > V_{\text{real}}

P_{\text{ideal}} V_{\text{ideal}} = nRT

If we substitute P_{\text{measured}} onto the LHS, since P_{\text{measured}} < P_{\text{ideal}}, the LHS will be smaller than the RHS:

P_{\text{measured}} V_{\text{ideal}} < nRT

So in order to maintain the equality, a correction term to the pressure must be added:

\left(P_\text{measured} + a\left(\frac{n}{V}\right)^2\right) V_{\text{ideal}} = nRT

P_{\text{ideal}} V_{\text{ideal}} = nRT

If we substitute V_{\text{measured}} onto the LHS, since that volume is bigger that actual volume available for the gas molecules to move, the LHS will be bigger than the RHS:

P_{\text{ideal}} V_{\text{measured}} > nRT

So in order to maintain the equality, a correction term to the pressure must be subtracted:

P_{\text{ideal}} \left(V_\text{measured}-nb\right) = nRT

.

In other words,

V_{\text{measured}} > V_{\text{real}}

V_{\text{ideal}} = V_{\text{real}}

V_{\text{measured}} > V_{\text{ideal}}

— Me@2018-05-13 03:37:18 PM

.

Why? I still do not understand.

.

How come

P_{\text{measured}} = P_{\text{real}}

but

V_{\text{measured}} \ne V_{\text{real}}?

.

How come

V_{\text{real}} = V_{\text{ideal}}

but

P_{\text{real}} \ne P_{\text{ideal}}?

— Me@2018-05-13 03:22:54 PM

.

The above is wrong.

The “real volume” V_{\text{real}} has 2 possible different meanings.

One is “the volume occupied by a real gas”. In other words, it is the volume of the gas container.

Another is “the volume available for a real gas’ molecules to move”.

.

To avoid confusion, we should define

V_{\text{real}} \equiv V_{\text{measured}}

P_{\text{real}} \equiv P_{\text{measured}}

.

Or even better, avoid the terms P_{\text{real}} and V_{\text{real}} altogether. Instead, just consider the relationship between (P_{\text{ideal}}, P_{\text{measured}}) and that between (V_{\text{ideal}}, V_{\text{measured}}).

Whether X_{\text{measured}} is bigger or smaller than X_{\text{ideal}} ultimately depends on the assumptions and definitions used in the derivation of the ideal gas equation itself.

— Me@2018-05-13 04:15:34 PM

.

.

2018.05.13 Sunday (c) All rights reserved by ACHK