Memory as past microstate information encoded in present devices

Logical arrow of time, 4.2

.

Memory is of the past.

The main point of memories or records is that without them, most of the past microstate information would be lost for a macroscopic observer forever.

For example, if a mixture has already reached an equilibrium state, we cannot deduce which previous microstate it is from, unless we have the memory of it.

This work is free and may be used by anyone for any purpose. Wikimedia Foundation has received an e-mail confirming that the copyright holder has approved publication under the terms mentioned on this page.

.

memory/record

~ some of the past microstate and macrostate information encoded in present macroscopic devices, such as paper, electronic devices, etc.

.

How come macroscopic time is cumulative?

.

Quantum states are unitary.

A quantum state in the present is evolved from one and only one quantum state at any particular time point in the past.

Also, that quantum state in the present will evolve to one and only one quantum state at any particular time point in the future.

.

Let

\displaystyle{t_1} = a past time point

\displaystyle{t_2} = now

\displaystyle{t_3} = a future time point

Also, let state \displaystyle{S_1} at time \displaystyle{t_1} evolve to state \displaystyle{S_2} at time \displaystyle{t_2}. And then state \displaystyle{S_2} evolves to state \displaystyle{S_3} at time \displaystyle{t_3}.

.

State \displaystyle{S_2} has one-one correspondence to its past state \displaystyle{S_1}. So for the state \displaystyle{S_2}, it does not need memory to store any information of state \displaystyle{S_1}.

Instead, just by knowing that \displaystyle{t_2} microstate is \displaystyle{S_2}, we already can deduce that it is evolved from state \displaystyle{S_1} at time \displaystyle{t_1}.

In other words, microstate does not require memory.

— Me@2020-10-28 10:26 AM

.

.

2020.11.02 Monday (c) All rights reserved by ACHK