Ex 1.29 A particle of mass m slides off a horizontal cylinder, 1.1

Structure and Interpretation of Classical Mechanics

.

A particle of mass m slides off a horizontal cylinder of radius R in a uniform gravitational field with acceleration g. If the particle starts close to the top of the cylinder with zero initial speed, with what angular velocity does it leave the cylinder?

~~~

Along the tangential direction,

\displaystyle{m \frac{dv}{dt} = m g \sin \theta - f_a - f}

Assuming there is only air friction,

\displaystyle{m \frac{dv}{dt} = m g \sin \theta - f_a}

.

If the air resistance \displaystyle{f_a} equals \displaystyle{\frac{\beta m v^2}{2 R}},

\displaystyle{    m \frac{dv}{dt} = m g \sin \theta - \frac{\beta m v^2}{2 R}    }

.

Along the normal direction,

\displaystyle{\begin{aligned}      F_{\text{net}} &= F_C \\    m g \cos \theta - F_R &= \frac{m v^2}{R} \\     \end{aligned}},

where \displaystyle{F_R} is the normal reaction force.

So

\displaystyle{\begin{aligned}      m R \frac{d \dot \theta}{dt} &= m g \sin \theta - \frac{\beta}{2} \left( m g \cos \theta - F_R \right)  \\     R \ddot \theta &=  g \sin \theta - \frac{\beta}{2} \left( g \cos \theta - F_R \right)  \\    \end{aligned}}

This equation is not useful yet, because \displaystyle{F_R(\theta(t))} is still not known. So we keep using the original equation:

\displaystyle{\begin{aligned}      m \frac{dv}{dt} &= m g \sin \theta - \frac{\beta m v^2}{2 R} \\     R \frac{d^2 \theta}{dt^2} &= g \sin \theta - \frac{\beta R \dot \theta^2}{2} \\     \end{aligned}}

Let

\displaystyle{\begin{aligned}      u &= \dot \theta^2 \\    \end{aligned}}

— Me@2023-05-23 11:02:25 AM

.

.

2023.05.25 Thursday (c) All rights reserved by ACHK