3.6 Analytic continuation for gamma function, 3

A First Course in String Theory

.

Explain why the above right-hand side is well defined for \displaystyle{  \Re (z) > - N - 1  }.

~~

\displaystyle{  \begin{aligned}    \Gamma (z) &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\\\    \end{aligned} \\ }

.

Prove that \displaystyle{\int_{1}^{\infty}t^{z-1}e^{-t}dt} converges.

Prove that \displaystyle{\int_{0}^{1}t^{z-1}e^{-t}dt} converges.

\displaystyle{  \begin{aligned}    \Re (z) &> 0 \\    \Gamma (z) &= \int_{0}^{\infty}t^{z-1}e^{-t}dt \\    &= \int_{0}^{1}t^{z-1}e^{-t}dt + \int_{1}^{\infty}t^{z-1}e^{-t}dt \\\\    \end{aligned} \\ }

\displaystyle{  \begin{aligned}    &\int_{0}^{1}t^{z-1}e^{-t}dt \\    &= \int_{0}^{1} t^{z-1} \sum_{n=0}^\infty \frac{(-t)^n}{n!} dt \\    &= \int_{0}^{1} t^{z-1} \left(  \sum_{n=0}^N \frac{(-t)^n}{n!}  +\sum_{n=N+1}^\infty \frac{(-t)^n}{n!}  \right) dt \\    \end{aligned} \\ }

\displaystyle{  \begin{aligned}    &= \int_{0}^{1} t^{z-1} \left(  \sum_{n=0}^N \frac{(-t)^n}{n!}  + e^{-t} - \sum_{n=0}^N \frac{(-t)^n}{n!}  \right) dt \\    \end{aligned} \\ }

.

\displaystyle{  \begin{aligned}    &\int_{0}^{1} t^{z-1} \frac{(-t)^n}{n!} dt \\    &= \frac{(-1)^n}{n!} \int_{0}^{1} t^{z+n-1} dt \\    &= \frac{(-1)^n}{n!} \frac{1}{z+n} \left[ 1 - 0^{z+n} \right] \\    \end{aligned} \\ }

Therefore, for the integral to converge, \displaystyle{  \Re (z) + n > 0  } is required. So for the overall integral \displaystyle{  \int_{0}^{1} t^{z-1} \sum_{n=0}^\infty \frac{(-t)^n}{n!} dt} to converge, a necessary condition is

\displaystyle{  \Re (z) + n_{\text{min}} > 0  }

Therefore,

\displaystyle{  \Re (z) > 0  }

.

Under this condition,

\displaystyle{ \begin{aligned} &\int_{0}^{1}t^{z-1}e^{-t}dt \end{aligned}  }
\displaystyle{   = \int_{0}^{1} t^{z-1} \left( \sum_{n=0}^N \frac{(-t)^n}{n!} +\sum_{n=N+1}^\infty \frac{(-t)^n}{n!} \right) dt, }

\displaystyle{   = \sum_{n=0}^N  \frac{(-1)^n}{n!} \frac{1}{z+n} + \int_{0}^{1} t^{z-1} \sum_{n=N+1}^\infty \frac{(-t)^n}{n!} dt}

So for \displaystyle{\Re (z) > 0},

— Me@2023-09-07 07:38:17 PM

.

.

2023.12.08 Friday (c) All rights reserved by ACHK