3 Vector Fields and One-Form Fields, 1.2

p. 21

5.

\displaystyle{(Df(x)) b(x) \ne (Df(x)) \Delta x}

Instead, \displaystyle{(Df(x)) b(x)} is a generalization of \displaystyle{(Df(x)) \Delta x}.

6.

However, how to calculate \displaystyle{(Df(x)) b(x)}?

By this:

\displaystyle{f(x + \Delta x) \approx f(x) +  (Df(x)) \Delta x}

Then:

\displaystyle{(Df(x)) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}}

So:

\displaystyle{(Df(x)) b(x) = \left( \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \right) b(x)}

7.

b is written as subscript to capture the meaning of “with respect to b“. The original directional derivative uses the same convention:

So the spatial rate of change of \displaystyle{f} along the direction of the vector \displaystyle{\mathbf{v}} is

\displaystyle{\begin{aligned}  D_{\mathbf{v}}(f)    &= \frac{\left(\delta f\right)_{\mathbf{v}}}{|\mathbf{v}|} \\    &= \frac{1}{|\mathbf{v}|} \left( \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial x} \delta y \right) \\    &= \frac{\partial f}{\partial x} \frac{\delta x}{\sqrt{(\delta x)^2 + (\delta y)^2}}  + \frac{\partial f}{\partial x} \frac{\delta y}{\sqrt{(\delta x)^2 + (\delta y)^2}} \\    &= \left(\nabla f\right) \cdot \frac{\mathbf{v}}{|\mathbf{v}|} \\  &= \left(\nabla f\right) \cdot \hat{\mathbf{v}} \\  \end{aligned}}

\displaystyle{D_{\mathbf{v}}(f)} is called directional derivative.

— Me@2016-02-06 09:49:22 PM

— Me@2023-12-27 01:37:32 PM

— Functional Differential Geometry

.

.

2023.12.27 Wednesday (c) All rights reserved by ACHK