Can it be Otherwise?

注定外傳 1.5

幾乎所有情況下,在同一個科學求知的任務中,理論(運算)和實驗(觀察)兩者,也是必須的;只是,在不同的任務,兩者的比重不同而已。

一方面,不可能只有理論而完全沒有實驗。即使沒有直接實驗,也必定有間接的實驗成份。試想想,那些理論從何而來?

不就是從無數的觀察和實驗中,歸納出來嗎? 

即使有些理論,真的來自靈感,不是來自實際,那個理論提出來以後,你又怎麼知道,正不正確,可不可靠呢?

未經證實的理論,只是「猜想」,不是「理論」。能經得起實際考驗的,才能升格為「理論」。

另一方面,不可能只有實驗而完全沒有理論。即使沒有直接理論,也必定有間接的理論成份。

試想想,那些實驗儀器,如何建造,從何而來?

不就是建基於,已知的理論嗎?

– Me@2015-09-22 07:41:07 AM

2015.09.22 Tuesday (c) All rights reserved by ACHK

Quantum Indeterminacy

注定外外傳 1

Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics.

Indeterminacy in measurement was not an innovation of quantum mechanics, since it had been established early on by experimentalists that errors in measurement may lead to indeterminate outcomes. However, by the later half of the eighteenth century, measurement errors were well understood and it was known that they could either be reduced by better equipment or accounted for by statistical error models. In quantum mechanics, however, indeterminacy is of a much more fundamental nature, having nothing to do with errors or disturbance.

— Wikipedia on Quantum indeterminacy

Quantum indeterminacy is the inability to predict the behaviour of the system with 100% accuracy, even in principle.

If everything is connected , quantum indeterminacy is due to the logical fact that, by definition, a “part” cannot contain (all the information of) the “whole”.

An observer (A) cannot separate itself from the system (B) that it wants to observe, because an observation is an interaction between the observer and the observed .  

In order to get a perfect prediction of a measurement result, observer (A) must have all the information of the present state of the whole system (A+B). However, there are two logical difficulties.

First, observer A cannot have all the information about (A+B).

Second, observer A cannot observe itself to get (all of) its present state information, since an observation is an interaction between two entities. Logically, it is impossible for something to interact with itself directly. Just as logically, it is impossible for your right hand to hold your right hand itself. 

So the information observer A can get (to the greatest extent) is all the information about B, which is only part of the system (A+B) it (A) needs to know in order to get a prefect prediction for the evolution of the system B.

— Me@2015-09-14 08:12:32 PM

2015.09.15 Tuesday (c) All rights reserved by ACHK

注定外傳 1.4

乙:沒有問題。我可以把地圖畫得又再大一點,以包括又再多細節。

甲:不行。那還不夠準確。

乙:你想多準確?

甲:完全、百分百、鉅細無遺、分毫不差。

乙:那唯有造一張「一比一的地圖」。

甲:什麼是「一比一的地圖」?

乙:即是與實地一樣大小的地圖。

換句話說,即是以實地為地圖。那樣,地圖就會失去了它原本的意義。

甲:什麼是「意義」?

乙:用途就是意義。

地圖本來的用途,是把實地的重點表達出來,從而帶領你,找到要去的地方。

當地圖的比例是一比一,與實地一樣大時,你就不能使用它了。以實地為地圖,即是沒有地圖。

地圖不是百分百準確,並不是地圖的缺點。相反,那是地圖的優點,因為,正正由於地圖只是實地的大概,它比實地小很多,可以指出重點,引導你到達目的地。

同理,科學理論中的數學模型,並不是現實的全部。理論不會包括實際的所有細節,並不是理論的缺點。相反,那是理論的優點,因為,正正由於理論(運算)只是實際的大概,它可以用比實驗(觀察)小很多的成本,事先推斷實驗結果的重點,從而令你知道,那些實驗毋須執行。

當理論百分百準確,包含了實際的所有細節時,你就不能使用它了,因為,那就相當於,直接觀察實際。所謂「實際」,即是自然現象,或者人工實驗。

以現實的數據為理論,即是沒有理論。

至於,什麼時候應該用理論和運算,什麼時候應該用實驗和觀察,並沒有一定的答案。那要視乎哪方可以用較低的成本,得到你需要知道的數據。

(問:你不是說理論的成本較低嗎?)

還要考慮上文下理。

一般而言,透過閱讀地圖的指引,走去目的地,會快過在從未看過地圖的情況下,就走進實地之中,直接尋找目的地。但是,那是假設了,那時你的手中已有地圖。

如果你手中未有地圖,在比較「地圖」和「實地」的成本時,一方面,你要考慮製作地圖、尋找地圖 和 購買地圖 等,所需的時間和金錢等資源;另一方面,你亦要考慮,在實地之中,環境複不複雜、自己熟不熟路、問路方不方便 等。

同理,在盤算「理論」和「實驗」的成本時,一方面,你要考慮,理論是否已有;已有的話,自己熟不熟悉;不熟的話,有沒有專家可問,自學的成本有多高;熟悉的話,運算複不複雜;複雜的話,可不可以用電腦程式代勞,等等。

另一方面,你亦要考慮,實驗那邊的對應問題,例如:

該實驗有沒有標準的工序流程,還是要自己設計?

該實驗所需的工具和儀器,是否現成,還是要自己建造?

現成的話,昂不昂貴?

買來之後,自己懂不懂操作?

幾乎所有情況下,在同一個科學求知的任務中,理論(運算)和實驗(觀察),兩者也是必須的;只是,在不同的任務,兩者的比重不同而已。

— Me@2015-09-07 08:59:31 PM

2015.09.08 Tuesday (c) All rights reserved by ACHK

注定外傳 1.3

我不能話你這個講法錯。但是,如果你真是這樣問,我大概只可以答「不可以」,因為,如果真的是「百份百相同」的情境,又怎可能有不同的結果呢?

如果有可能有不同結果,那樣,引起另一結果的因素,總會與引起原本結果的因素,至少有一點不同。

(問:不是呀。在量子力學中,即使有兩組百分百一樣的物理系統,即使它們獲得完全相同的輸入,都可能有不同的輸出。)

你大概正確。但是,你要留意,量子力學中的「百分百一樣」物理系統,未必是你心目中的「百分百一樣」。

第一,量子力學(或其他任何科學)中的數學公式,只是數學模型,簡稱「理論」。模型的意思是,現實的近似,而不是現實的全部細節。

例如,地圖是實地的大概。試想想,一幅地圖比實地小那麼多,又怎可能包含了實地的所有細節呢?

作為實地的大概,只要令到閱者,準確到達目的地,一幅地圖,就已經盡了它的責任。

假設有一位地圖顧客(甲),向一位地圖製作人(乙),要求一幅準確一點的地圖。

乙:沒有問題。如果想令一幅地圖準確一點,我可以把地圖畫得大一點,那就可以包括更多細節。

甲:不行。那還不夠準確。

乙:沒有問題。我可以把地圖畫得再大一點,以包括再多細節。

甲:不行。那還不夠準確。

乙:沒有問題。我可以把地圖畫得又再大一點,以包括又再多細節。

甲:不行。那還不夠準確。

乙:你想多準確?

甲:完全、百分百、鉅細無遺、分毫不差。

乙:那唯有造一張「一比一的地圖」。

甲:什麼是「一比一的地圖」?

乙:即是與實地一樣大小的地圖。

換句話說,即是以實地為地圖。那樣,地圖就會失去了它原本的意義。

甲:什麼是「意義」?

乙:用途就是意義。

地圖本來的用途,是把實地的重點表達出來,從而帶領你,找到要去的地方。

當地圖的比例是一比一,與實地一樣大時,你就不能使用它了。以實地為地圖,即是沒有地圖。

地圖不是百分百準確,並不是地圖的缺點。相反,那是地圖的優點,因為,正正由於地圖只是實地的大概,它比實地小很多,可以指出重點,引導你到達目的地。

同理,科學理論中的數學模型,並不是現實的全部。理論不會包括實際的所有細節,並不是理論的缺點。

— Me@2015-08-04 07:57:59 AM

2015.08.05 Wednesday (c) All rights reserved by ACHK

注定外傳 1.2

(問:但是,有沒有一個可能是,其實,將來所有事情的所有方面,都是注定的。所謂的「將來」,其實和「過去」一樣,都完全是固定的。

還有,你的講法的另一個不當之處是,當一個人問,某一件事是不是注定的,即使問的時間,是在該事件發生之後,他問題的意思,當然是「那件事,在事前是否注定的?」

否則,問者就是一個傻子。試想想,又怎會有人問,「那件事,在事後是否注定」呢?)

無錯。當一個人問一件事是不是注定時,意思往往是問,該件事可不可以預防。換句話說,問題可以翻譯成:

下次如果遇到類似的情境,可不可以有不同的結果?

(問:為什麼你要講「類似」?

如果只是「類似」,不是「相同」的情況,當然可以有不同結果。為什麼你不直接問:

下次如果遇到相同的情境,可不可以有不同的結果?

我認為,那才是「是否注定」問題的真正意思。)

我不能話你這個講法錯。但是,如果你真是這樣問,我大概只可以答「不可以」,因為,如果真的是「百份百相同」的情境,又怎可能有不同的結果呢?

如果有可能有不同結果,那樣,引起另一結果的因素,總會與引起原本結果的因素,至少有一點不同。 

(問:不是呀。在量子力學中,即使有兩組百分百一樣的物理系統,即使它們獲得完全相同的輸入,都可能有不同的輸出。)

你大概正確。

— Me@2015.05.26

2015.07.10 Friday (c) All rights reserved by ACHK

機遇再生論 1.4

『機遇再生論』的大概意思是,所有可能發生的事情,例如重生,只要等足夠長的時間,總會發生。

但是,即使避開了「無限」,用了「足夠長」,仍然會有其他問題。「足夠長」這個詞語雖然不算違法,但是十分空泛,空泛到近乎沒有意義。

試想想,怎樣才為之「足夠長」呢?

.

以前在本網誌中提及過,凡是科學句子,都一定要有「可否證性」。因為凡是科學句子,都對世界有所描述,所以必為「經驗句」,不是「重言句」。凡是「經驗句」,必定有機會錯。換而言之,無論正確的機會率有多高,都不會是百分百。

因此,要測試某一句說話,是不是「科學句子」,你可以檢查一下,它有沒有「可否證性」。「可否證性」的意思是,如果一句「科學句子」有意義,你就可以講得出,至少在原則上,它在什麼情況下,為之錯。

例如,

甲在過身之後,一千億年內會重生。

是句「科學句」(經驗句),因為你知道在什麼情境下,可以否證到它 —— 如果你在甲過身後,等了一千億年,甲還未重生的話,那句就為之錯。

但是,

甲在過身之後,只要等足夠長的時間,必會重生。

則沒有任何科學意義。

— Me@2015.04.08

.

.

2015.04.15 Wednesday (c) All rights reserved by ACHK

機遇再生論 1.3

『機遇再生論』的大概意思是,所有可能發生的事情,例如重生,在無限長的未來時間中,必會發生。

機遇再生論原始版本,有問題的字眼中,除了「所有」之外,還有「無限」。「無限」通常都是一個違法詞語。「無限」引起的問題,以前論述過,現不再詳談。請參閱「無限」系列的文章。

你可以嘗試移除「無限」這個詞語,只把「無限」的意思中,有意義的部分保留:

『機遇再生論』的大概意思是,所有可能發生的事情,例如重生,只要等足夠長的時間,總會發生。

但是,即使避開了「無限」,用了「足夠長」,仍然會有其他問題。「足夠長」這個詞語雖然不算違法,但是十分空泛,空泛到近乎沒有意義。

試想想,怎樣才為之「足夠長」呢?

— Me@2015.04.08

.

.

2015.04.09 Thursday (c) All rights reserved by ACHK

Confirmation

Ideal clock 4 | 物理定律團 1.1.2 | Verification principle, 6

confirm = is compatible with

A confirms B

= A is compatible with B

The assumptions that are compatible with most other physical laws and events are called physical laws. In this sense, physical laws are conventions.

conventions ~ convenience

The physical laws are the most convenient assumptions to describe the physical world.

most convenient ~ most cost-effective

— Me@2013.10.25 19.32.56

2013.10.26 Saturday (c) All rights reserved by ACHK

量子力學 1.17

因果律 1.22 | 語意互相推卸責任論 1.22 | Verification principle, 5.22 | 西瓜 9.22 | Make a difference, 3.3

這段改編自 2010 年 4 月 3 日的對話。

換而言之,根據「印證原則」和「萊布尼茲同一律」,你至少要在原則上,講得出有什麼方法,以什麼形式的實驗,分辨到哪一句對和哪一句錯,「量子自由論」和「量子決定論」,才算是「兩個不同」的理論。

如果,就連在原則上,你都講不出,如何分辨它們誰是誰非 —— 所有可能的實驗結果,「量子自由版本」和「量子決定版本」,都必定一模一樣的話,「量子自由論」和「量子決定論」就根本是「同義句」。

(安:那就即是話,如果「量子物理定律」是正確的,無論我「相信」「量子自由論」,還是「量子決定論」,我都沒有錯。)

無錯。你可以根據個人喜好兩選其一,去作為你的世界觀。

我個人的取態是,相信「量子決定論」,取其作為我的思想架構。「量子決定論」不可以直接運用,不代表不可以間接運用;不可以全部運用,不代表不可以部分運用。而「間接而部分運用」的方法是,透過「局部版因果律」,去理解世界:

我們越詳細地了解,越多的物理定律,只要掌握某一個時刻,某一個物理系統,越精緻和越豐富資料,我們就可以越準確地,推斷到該個物理系統,在其他時刻的狀態,無論是過去或者將來。

簡而言之,

所知越多,預測就越準確。

— Me@2013.10.14

2013.10.14 Monday (c) All rights reserved by ACHK

Factorial

西瓜 11

這段改編自 2010 年 7 月 27 日的對話。

記住,你用 factorial(階乘)時,按照 factorial 本身的定義,你不會乘到負數。Factorial 的意思是,

n! = n(n-1)(n-2)…(3)(2)(1)

為什麼是這樣呢?

這個是定義。如果是「定義」的話,就沒有所謂的「對錯」。你不能問,為什麼這麼定義。你只可以問,這個定義有沒有用處,和用起來時方不方便。

正如,為什麼「爺爺」是「爸爸的爸爸」呢?

那是字眼用法問題,並沒有「定義」以外的原因。因為,每次提及「爸爸的爸爸」時,都要講五個字,十分花時間,所以,為方便起見,我們定義「爺爺」這兩個字,為「爸爸的爸爸」的簡稱。

為什麼要定義 factorial 呢?

那是因為數學家發覺,時常有這個數式出現:

n(n-1)(n-2)…(3)(2)(1)

每次也要寫這麼長的數式,十分費時失事,有個簡稱會方便很多。

— Me@2013.10.12

2013.10.13 Sunday (c) All rights reserved by ACHK

量子力學 1.16

因果律 1.21 | 語意互相推卸責任論 1.21 | Verification principle, 5.21 | 西瓜 9.21 | Make a difference, 3.2

這段改編自 2010 年 4 月 3 日的對話。

根據「印證原則」(confirmation principle/weak verification principle)的延伸,或者根據萊布尼茲的「同一律」(identity of indiscernibles),無論句子甲乙的字眼有多大的不同,如果,即使只在原則上而言,你都講不出句子甲和句子乙的意思,在什麼情況之下,有怎麼樣的分別,句子甲乙就根本地,有著同一個意思。兩句只不過是,同一個意思的兩個表達方式而已。

正如「二加二」和「五減一」,雖然貌似不同,實質意思一樣。爭論「二加二」和「五減一」哪個才算正確,只是言辭之爭,浪費時間。

「自由意志問題」的核心難處,正正是帶著這種性質的言辭之爭。「自由意志問題」的意思是,究竟人或者其他有意識的物體,有沒有自由意志?

一個人的意志是自由的,可以做自己的決定;還是,一個人的意志,其實都是受制於各個自然定律,各個決定都是注定的?

簡化起見,我暫時只講,眾多意見中的其中兩個。其一是相信量子物理定律,而認為人有「自由意志」,簡稱「量子自由論」。其二是相信量子物理定律,但卻認為沒有任何東西,可以有「自由意志」,簡稱「量子決定論」。

「量子自由論者」認為:

雖然,宇宙萬物都要遵守『量子物理定律』,隨之而演化,但是,『量子物理定律』本身,內置了隨機性,不單只『容許』,甚至是『勒令』,要有『一因多果』的情況。

那樣,雖然,在同一個處境之下,人不會有無限個選擇,即是不會有絕對的自由,但是,在同一個處境之下,人往往有超過一個,可能的未來。

由『量子物理定律』所容許的,幾個可能未來之中,選擇自己最喜愛的一個,把它實現,就是在運用『自由意志』。

「量子決定論者」則認為:

宇宙隨著量子物理定律演化,一切事件皆是必然的,包括每一個人的每一個決定。而人有自由意志,只是一種錯覺。

雖然,『量子物理定律』本身,內置了隨機性,但是,那些『隨機性』只不過是來自於,邏輯上,我們沒有可能,收集到整個宇宙的所有狀態資料。如果,我們可以知道宇宙,在某一個時刻的全部資料,宇宙之中的所有事件,無論是在過去或者將來,包括每一個人的每一個決定,都可以用『量子物理定律』,運算推斷出來。

一因只會有一果 —— 在同一個處境之下,人只會有一個可能的未來。一切事件皆是必然的,包括每一個人的每一個決定。

(安:你想講,「量子自由論」和「量子決定論」,其實沒有分別?)

無錯。「印證原則」的意思是,你起碼要假想到,「量子自由論」和「量子決定論」在什麼情況下,有怎麼樣的不同結果,它們的內容才算是,真正的「有分別」。

而「同一律」的意思則是,「沒有分別」的東西,就為之「相同」。

The difference that makes no difference makes no difference.

換而言之,根據「印證原則」和「萊布尼茲同一律」,你至少要在原則上,講得出有什麼方法,以什麼形式的實驗,分辨到哪一句對和哪一句錯,「量子自由論」和「量子決定論」,才算是「兩個不同」的理論。

如果,就連在原則上,你都講不出,如何分辨它們誰是誰非 —— 所有可能的實驗結果,「量子自由版本」和「量子決定版本」,都必定一模一樣的話,「量子自由論」和「量子決定論」就根本是「同義句」。

— Me@2013.10.09

2013.10.09 Wednesday (c) All rights reserved by ACHK

Logically valid formulas

西瓜 10

As we already noted above, in a sense, logically valid formulas “do not contain information” (are “content-free”) − just because they are true in all interpretations, i.e. they are true independently of the “meaning” of language primitives.

— Introduction to Mathematical Logic

— Hyper-textbook for students

— Vilnis Detlovs and Karlis Podnieks

2013.10.06 Sunday ACHK

量子力學 1.15

因果律 1.20 | 語意互相推卸責任論 1.20 | Verification principle, 5.20 | 西瓜 9.20 | Make a difference, 3

這段改編自 2010 年 4 月 3 日的對話。

那彷彿就好像,你中了彩票,獲得了一千億元的獎金,存入了你的銀行戶口。但是,銀行的職員跟你說,你每日最多只能從那個戶口中,提款一百元。你就立刻發覺,窮你一生,甚至是十世的時間,都不能用盡那一千億元。如果你的朋友問你:「你是否擁有一千億元?」

你就唯有無奈地答:「那要視乎你『擁有』的定義。擁有而不能用,還算不算是『擁有』呢?」

安:但是,你又真的可以,從那一千億元的戶口之中,每天提取一百元去用。因為那些一百元,始終是來自那一千億元的,你不能說,那一千億元完全沒有用,完全不屬於你。)

無錯。

在這個例子中,你既可以說

我有一千億元的金錢,不過每日只可以提取一百元來使用

」;

亦可以說

我根本沒有一千億元的金錢,不過之後的每一天,也可以得到一百元的獎金。

(安:兩個講法之中,哪一個講法才是正確的?)

兩個都正確。兩個都可以用,因為兩個講法,都準確而完整地,描述了事實。

(安:那樣,哪一個講法,會比較好一點?)

因為兩個都正確,所以客觀上,並沒有所謂,哪一個會比較好一點。主觀上,你可以用經濟原則 —— 哪一句精簡一點,你就用哪一句。但是,在這個例子中,兩句的字數差不多。所以,基本上,你喜歡用哪一句,就用哪一句。

根據「印證原則」(confirmation principle/weak verification principle)的延伸,或者根據萊布尼茲的「同一律」(identity of indiscernibles),

無論句子甲乙的字眼有多大的不同,如果,即使只在原則上而言,你都講不出句子甲和句子乙的意思,在什麼情況之下,有怎麼樣的分別,句子甲乙就根本地,有著同一個意思。兩句只不過是,同一個意思的兩個表達方式而已。

正如「二加二」和「五減一」,雖然貌似不同,實質意思一樣。爭論「二加二」和「五減一」哪個才算正確,只是言辭之爭,浪費時間。

— Me@2013.10.03

2013.10.04 Friday (c) All rights reserved by ACHK

量子力學 1.14

因果律 1.19 | Verification principle, 5.19 | 西瓜 9.19

這段改編自 2010 年 4 月 3 日的對話。

(安:言歸正傳,剛才所講,「量子決定論」的難處在於:

理論上,『量子決定論』相當可信。但是,實際上,『量子決定論』並不可用。而這個『實際上』,實際上是『理論上』或者『原則上』,因為,即使只在原則上而言,任何觀察者也沒有可能,知道整個宇宙狀態的所有數據。

但是,再之前,討論「Laplace 因果律的宇宙版」(經典物理決定論)時,你又指出相同的難處:

即使假設在原則上,我們只要掌握某一個時刻,宇宙狀態的所有資料,我們就可以推斷到,宇宙在任何其他時刻的狀態;我們即使在原則上,也沒有可能,掌握某一個時刻,宇宙狀態的所有資料。

那樣,「量子物理決定論」和「經典物理決定論」,又有何分別呢?

核心分別在於,當兩者都遇上「宇宙版無從驗證」時,「經典決定論」可以由「可信而不可用」的「Laplace 因果律的宇宙版」,修減成「可信又可用」的「Laplace 因果律的局部版」 :

對於同一個物理系統而言,同一個設定(輸入),就每次也會得到,同一個對應的後果(輸出)。

例如,液態的清水,處於地球正常大氣壓力之下,會在攝氏零度開始結冰。我們所考慮的物理系統,就是『處於地球正常大氣壓力下的液態清水』。如果輸入是『溫度攝氏零度』,輸出就一定是『開始結冰』,又名『凝固』。那就為之『世事有常』。

」;

但是,「量子決定論」並沒有所謂的「局部版」,因為考慮「局部版」的話,就一定帶有隨機性,再也不成「一因一果」的「決定論」。

而在微觀粒子的世界,正正是那麼奇幻 —— 同一個情境之下,會有超過一個可能的結果。

用「量子力學」去預測,一個「微觀物理系統」的演化結果時,即是只在原則上而言,我們至多也只可以,預測有那些可能的結果,和各個結果的對應機會率;而大部分情況下,也不可以明確指出,結果一定是哪一個。

— Me@2013.09.30

2013.09.30 Monday (c) All rights reserved by ACHK

量子力學 1.13

因果律 1.18 | Verification principle, 5.18 | 西瓜 9.18

這段改編自 2010 年 4 月 3 日的對話。

理論上,「量子決定論」相當可信。但是,實際上,「量子決定論」並不可用。而這個「實際上」,實際上是「理論上」或者「原則上」,因為,即使只在原則上而言,任何觀察者也沒有可能,知道整個宇宙狀態的所有數據。

換而言之,無論智力有多高超、科技有多先進,也沒有任何 人類、生物、電腦 或者 神明,可以達到運用「量子決定論」的先決條件。邏輯上,沒有任何觀察者,可以百分之一百地,執行到「量子決定論」。

「量子決定論」可信而不可用。可信而不可用,還有資格叫做「可信」嗎?

這個問題,可以用剛才討論的那個例子來理解:

那彷彿就好像,你中了彩票,獲得了一千億元的獎金,存入了你的銀行戶口。但是,銀行的職員跟你說,你每日最多只能從那個戶口中,提款一百元。你就立刻發覺,窮你一生,甚至是十世的時間,都不能用盡那一千億元。如果你的朋友問你:「你是否擁有一千億元?」

你就唯有無奈地答:「那要視乎你『擁有』的定義。擁有而不能用,還算不算是『擁有』呢?」

(安:但是,你又真的可以,從那一千億元的戶口之中,每天提取一百元去用。因為那些一百元,始終是來自那一千億元的,你不能說,那一千億元完全沒有用,完全不屬於你。)

無錯。

可信而不可用,還有資格叫做「可信」嗎?

那要視乎你「可信」的定義。

— Me@2013.09.25

2013.09.25 Wednesday (c) All rights reserved by ACHK

量子力學 1.12

因果律 1.17 | Verification principle, 5.17 | 西瓜 9.17

這段改編自 2010 年 4 月 3 日的對話。

簡而言之,

    宇宙隨著量子物理定律演化,一切事件皆是必然的。

但是,你要小心一點,這只是暫時的結論,而未是最終的結論。到這一步為止,我們只處理了「量子決定論」的第一個問題,而未處理第二個問題。我們暫時只知道,理論上,「量子決定論」相當可信。但是,我們還未確定,實際上,「量子決定論」可不可信。換而言之,我們只知其「可信」,而不知其「可用」與否。

「量子決定論」的第二個問題是,在任何一次的實驗之前,你都要知道整個宇宙狀態的所有數據,才可以百分百準確地,預測到該個實驗的結果。

但是,「宇宙」就是「所有東西」。邏輯上,任何觀察者也沒有可能,觀察到「所有東西」,因為任何觀察者本身,也必定是「宇宙」的一部分。正如,在拍大合照時,並沒有可能會拍到所有人,因為,總要有一個人,去做攝影師。

準確一點的比喻是,邏輯上,任何攝影機也沒有可能,拍攝到「所有東西」,因為至少有一樣東西,它一定拍不到;那就是它自己。

理論上,「量子決定論」相當可信。但是,實際上,「量子決定論」並不可用。而這個「實際上」,實際上是「理論上」或者「原則上」,因為,即使只在原則上而言,任何觀察者也沒有可能,知道整個宇宙狀態的所有數據。

換而言之,無論智力有多高超、科技有多先進,也沒有任何 人類、生物、電腦 或者 神明,可以達到運用「量子決定論」的先決條件。邏輯上,沒有任何觀察者,可以執行到「量子決定論」。

「量子決定論」可信而不可用。

— Me@2013.09.22

2013.09.23 Monday (c) All rights reserved by ACHK

量子力學 1.11

因果律 1.16 | Verification principle, 5.16 | 西瓜 9.16

這段改編自 2010 年 4 月 3 日的對話。

同理,如果一位物理學家斷言,

『量子力學』一定正確

或者

『量子決定論』一定正確

」,

他就不是一位負責任的物理學家。但是,如果他宣稱的只是, 

如果『量子力學』是正確的,『量子決定論』則是必然的

」,

他就不會錯,因為這只不過是一句「重言句」。這一句以外,我們還有另一句:

『量子力學』由發現至今八十多年;每逢應用在引力不強的物理系統時,都會得到準確的預測。所以「量子力學」本身,極度可信。

兩句加起來一併考慮的話,我們的結論就是,「量子決定論」相當可信。「量子決定論」的意思是,

一個物理系統的『量子隨機性』,來自於該個物理系統的『環境』。所以,在對任何一個物理系統做實驗之前,你只要知道,整個宇宙狀態的所有數據,你就可以百分百準確地,預測到該個實驗的結果。

簡而言之,

宇宙隨著量子物理定律演化,一切事件皆是必然的。

但是,你要小心一點,這只是暫時的結論,而未是最終的結論。到這一步為止,我們只處理了「量子決定論」的第一個問題,而未處理第二個問題。我們暫時只知道,理論上,「量子決定論」相當可信。但是,我們還未確定,實際上,「量子決定論」可不可信。換而言之,我們只知其「可信」,而不知其「可用」與否。

— Me@2013.09.19

2013.09.19 Thursday (c) All rights reserved by ACHK

量子力學 1.10

因果律 1.15 | Verification principle, 5.15 | 西瓜 9.15

這段改編自 2010 年 4 月 3 日的對話。

科學,就是一大堆描述世界的句子。所以,科學句子有機會錯,並不成批評「科學句子」(經驗句)的有效理據。正正是因為科學句子有機會錯,科學才能對外在世界,有所描述。我們可以做的,就只有做大量的實驗,試圖去蕪存菁,否證最多的「科學句」為止。

經歷大量考驗後,仍然生還的「科學句」,正確的機會率就十分高。即使不會像「重言句」般絕對正確,仍然會有一個極高的準確度,導致可信可用。

如果你還不安心,你可以把「星不方論」由

宇宙間沒有任何一個天然的行星,形狀會是正方體的

」,

改為

如果『經典物理學』是正確的,宇宙間沒有任何一個天然的行星,形狀會是正方體的。

那就再保險多一重。根據「經典物理學」的推論,沒有行星會是正方體的。如果「經典物理學」正確,結論就一定正確;如果「經典物理學」不正確,結論就可能不正確。

留意,

如果『經典物理學』是正確的,宇宙間沒有任何一個天然的行星,形狀會是正方體的

本身是「重言句」,所以百分百準確,沒有錯的可能。但是,

『經典物理學』是正確的

宇宙間沒有任何一個天然的行星,形狀會是正方體的

則是「經驗句」,一定有機會錯。你必須靠直接或者間接的觀察或者實驗,才能判別它們的真偽。

比喻說,

如果我有兩張 10 元紙幣,我就有起碼 20 元的財產

本身是「重言句」,所以百分百準確,沒有錯的可能。但是,至於我是否真的

有兩張 10 元紙幣

或者

有起碼 20 元的財產

」,

則暫時不得而知,所以有機會錯。你必須靠直接或者間接的觀察或者實驗,才能判別它們的真偽。

— Me@2013.09.12

2013.09.13 Friday (c) All rights reserved by ACHK

量子力學 1.9

因果律 1.14 | Verification principle, 5.14 | 西瓜 9.14

這段改編自 2010 年 4 月 3 日的對話。

學生乙:你怎知道呢?你又沒有可能,遊歷整個宇宙,經過每個星球。

甲:

第一,我們觀察過的所有行星,都不是正方體的。

第二,根據「經典力學」的運算推論,正方體行星是不可能的;即使有,它也很快會因為自轉,而變成近似球體的形狀。

第三,「經典力學」由發現至今三百多年;每逢應用在宏觀兼低速的物理系統時,都會得到準確的預測。所以「經典力學」本身,極度可信。

乙:「極度可信」,即是「不是百分百的肯定」。「肯定」的東西,就毋須去「信」。

甲:只有「重言句」,才會有百分百的肯定。例如,

冰箱內有西瓜或者沒有西瓜。

你只要知道「或者」這個詞語的意思,就可以百分百地肯定,這句說話是正確的。

「重言句」是詞語之間的關係。「重言句」的正確與否,你只要觀察句子之中,各個字詞的意思,就可以判斷得到,而毋須對外在世界,作任何形式的觀察或者實驗。所以,「重言句」的代價是,它沒有任何訊息內容。意思是,它對這個世界無所描述,導致你不能從它身上,去了解外在世界。例如,究竟冰箱內,有西瓜還是沒有西瓜呢?

相反,凡是對世界有所描述的句子,簡稱「經驗句」,都有機會錯。

例如,

冰箱內有西瓜。

你不能單靠分析這句句子之中,各個字詞的意思,去判斷這句句子的對錯。這就是「『經驗句』有機會錯」的意思。想要知道句子的對錯,你就一定要求證一下——你要打開冰箱檢查一下,內裡是否真的有西瓜。如果有,「冰箱內有西瓜」這一句,正確的機會率就會大大提高。

但是,那仍然不會是,百分之一百的肯定,因為,即使你親眼看見,親口吃過,你也不能百分百排除,那是幻覺夢境。「描述世界」的代價是,有機會錯。

科學,就是一大堆描述世界的句子。所以,科學句子有機會錯,並不成批評「科學句子」(經驗句)的有效理據。正正是因為科學句子有機會錯,科學才能對外在世界,有所描述。我們可以做的,就只有做大量的實驗,試圖否證最多的「科學句」。

經歷大量考驗後,仍然生還的「科學句」,正確的機會率就十分高。即使不會像「重言句」般絕對正確,「生還科學句」仍然會,有一個極高的準確度,導致可信可用。

— Me@2013.09.10

2013.09.10 Tuesday (c) All rights reserved by ACHK

量子力學 1.8

因果律 1.13 | Verification principle, 5.13 | 西瓜 9.13

這段改編自 2010 年 4 月 3 日的對話。

無論你所指的「環境」是廣義還是狹義,你也會「牽一髮而動全宇宙」。

一個物理系統的「量子隨機性」,來自於該個物理系統的「環境」。換而言之,在對一個物理系統做實驗前,你只要知道,整個宇宙狀態的所有數據,你就可以百分百準確地,預測到該個實驗的結果。

但是,這個猜想有兩大潛在問題。方便起見,我把這個猜想,簡稱為「量子決定論」。

第一個問題是,我們不知「量子決定論」,是否完全正確。不過,你不用擔心這個問題,因為這個猜想十分可信。

雖然,因為物理學家並沒有可能,收集到宇宙的所有資料,導致不可能直接地,去否證或者印證「量子決定論」;但是,物理學家有間接但有力的證據。而那有力的證據就是,「量子力學」在這一個世紀以來,在無數的 物理實驗 和 科技應用 中,有重大的成功,導致「量子力學」極度可信。

假設「量子力學」是完全正確的話,「量子決定論」就是必然的邏輯推論。

我們可以用以下一個「經典力學」的例子作比喻,去理解在這個上文下理之下,何謂「必然的邏輯推論」。

假設,物理學家(甲)提出了一個「行星不會正方體論」,簡稱為「星不方論」。甲宣稱,宇宙間沒有任何一個天然的行星,形狀會是正方體的。

學生乙:你怎知道呢?你又沒有可能,遊歷整個宇宙,經過每個星球。

甲:

第一,我們觀察過的所有行星,都不是正方體的。

第二,根據「經典力學」的運算推論,正方體行星是不可能的;即使有,它也很快會因為自轉,而變成近似球體的形狀。

第三,「經典力學」由發現至今三百多年;每逢應用在宏觀兼低速的物理系統時,都會得到準確的預測。所以「經典力學」本身,極度可信。

— Me@2013.09.04

2013.09.05 Thursday (c) All rights reserved by ACHK