Quantum Methods with Mathematica
.
Assume a wavefunction of the form psi[x, t] == f[t] psi[x] and perform a separation of variables on the wave equation.
Show that f[t] = E^(-I w t) where h w is the separation constant. Try the built-in function DSolve.
Equate h w to the Energy by evaluating the [expected] value of hamiltonian[V] in the state psi[x, t].
~~~
Remove["Global`*"]
hbar := \[HBar]
H[V_] @ psi_ := -hbar^2/(2m) D[psi,{x,2}] + V psi
psi[x_,t_] := f[t] psi[x]
I hbar D [psi[x,t],t] == H[V] @ psi[x, t]
I hbar D [psi[x,t],t] / psi[x,t] == H[V] @ psi[x,t] / psi[x,t]


E1 := I hbar D [psi[x,t],t] / psi[x,t] == H[V] @ psi[x,t] / psi[x,t]
Simplify[E1]

E2 := - 1/2 hbar hbar (D[D[psi[x],x],x]/(m psi[x])) == hbar omega
DSolve[E2, psi[x], x]
E3 := 1/2 hbar 2 i D[f[t],t] / f[t] == hbar omega
DSolve[E3, f[t], t]


k
psi[x_] := c E^(I k x)
psi[x]
f[t_] := E^(-I omega t)
f[t]
psi[x_,t_] := f[t] psi[x]
psi[x,t]

E4 := Conjugate[psi[x,t]] H[0] @ psi[x,t]
E4
E5 := Simplify[E4]
E5
k := Sqrt[2 m omega / hbar]
Refine[E5, {Element[{c, omega, m, t, hbar, k, x}, Reals]}]


E6 := Conjugate[psi[x,t]] psi[x,t]
Simplify[E6]


.

.
— Me@2022-11-26 07:17:29 PM
.
.
2022.11.28 Monday (c) All rights reserved by ACHK
You must be logged in to post a comment.