注定外傳 2.1.2

Can it be Otherwise? 2.1.2 | The problem of induction 2.2

甲總可以找到,事件「這次數學考試我不合格」的獨特之處。(至起碼,另一事件和原本事件,發生的時空不同。)

而乙則指出,一方面,正正是因為「總可以找到原本事件的獨特之處」,根本沒有和原本事件,「絕對相同」的另一件事件,可以給你判別,原本事件是否注定;至多只能與,「盡量相似」的事件比較,看看有沒有可能,有不同的結果。

另一方面,正正是因為,你「至多只能與,『盡量相似』的事件比較」:

1. 當你的「相似事件」和「原本事件」的結果相同時,你只可以知道「原本事件」,可能是注定;你並不可以肯定「原本事件」,一定是注定,因為,你並不能保證,下一件「相似事件」的結果,會不會仍然和「原本事件」相同。

你最多只能說,在尚未找到反例前,越多「相似事件」和「原本事件」的結果相同,就代表「原本事件是注定」這個猜想,越可信。

這個過程,學名叫做「印證」。「印證」不是「論證」,只能用來加強「猜想」的可信性;而可信性,並不會百分之一百(,除非那句「猜想」,根本是「重言句」)。

2. 當你的「相似事件」和「原本事件」的結果不同時,你亦不可以肯定「原本事件」,一定是偶然,因為,結果不同,可能只是由於「相似事件」和「原本事件」,不夠相似而已。

你並不能保證,在下一個層次,解像度再高一點時,「更相似事件」和「原本事件」的結果,會不會「必為相同」。

對於一件過去之事,總括而言,你並沒有方法,證明它是必然;亦沒有方法,證明它為偶然(,如果沒有相對於,一個指定「觀測解像度」來說的話)。

— Me@2015-11-17 02:02:03 PM
 

2015.11.26 Thursday (c) All rights reserved by ACHK

E1.2

Do not be too timid and squeamish about your actions. All life is an experiment. The more experiments you make the better.

— Emerson

One experience [almost] always helps another, because the first experience betters you, to deal with the second experience; even if the first experience is unpleasant.

— Me@2011.07.16

— Me@2015.11.19

2015.11.19 Thursday (c) All rights reserved by ACHK

注定外傳 2.1.1

Can it be Otherwise? 2.1.1 | The problem of induction 2.1

如果沒有明確指出,那個「必然」,是相對於哪個「觀測準確度」(觀察者解像度)而言的話,問一件事是不是「必然」,是沒有意思的,因為,無論那一件事,是在過去還是未來,往往既可以解釋成「必然」,又可以解釋為「非必然」。

對於過去的事,例如,在剛才甲和乙「這次數學考試我不合格,是不是必然」的討論中,當一方說那件事是「必然」時,另一方可以立刻,走深一個層次, 到達下一個「觀測解像度」,把同一件事,說成是「偶然」的;然後,原方又可以再走到,再下一個層次,把那事說成是「必然」的;如此類推。

(層次一的事件描述:)

當甲覺得「這次數學考試我不合格」,可能是「必然」時,

(層次一的反證:)

乙可以指出,其他同學中,有人於該次考試中合格,證明了「這次數學考試不合格」,並非必然。

(層次二 —— 準確一點的事件描述:)

然後,甲又可以質疑,那只是簡化了事件描述,所做成的錯誤結論;他所指的事件,是「這次數學考試我不合格」,而不是「這次數學考試不合格」。

(層次二 —— 詳細一點的反證:)

接著,乙再可以指出,甲在數學科的其他考試中,試過合格。所以,「甲數學考試不合格」,並非注定。

(層次三:)

但是,甲又可以質疑,那亦是簡化了事件描述,所做成的錯誤結論;他所指的事件,是「這次數學考試我不合格」,而不是「數學考試我不合格」。

然後,乙再可以指出,甲可以將那份試卷,再做一次;如果合格,那就可以證明,「這次數學考試甲不合格」,並非必然。

(層次四:)

接著,甲又可以質疑,那都是簡化了事件描述,所做成的錯誤結論;他所指的事件,是「這次數學考試我不合格」,而不是「這份數學考試卷我不合格」。再做一次同一份考試卷,根本不應視作為,同一次考試。

甲總可以找到,事件「這次數學考試我不合格」的獨特之處。(至起碼,另一事件和原本事件,發生的時空不同。)

而乙則指出,一方面,正正是因為「總可以找到原本事件的獨特之處」,根本沒有和原本事件,「絕對相同」的另一件事件,可以給你判別,原本事件是否注定;至多只能與,「盡量相似」的事件比較,看看有沒有可能,有不同的結果。

— Me@2015-11-17 02:02:03 PM
 

2015.11.18 Wednesday (c) All rights reserved by ACHK

Ground states and Annihilation operators

1. The equation a | 0 \rangle = 0 means that the eigenvalue of a on | 0 \rangle is 0:

a | 0 \rangle = 0 | 0 \rangle

2. The length of the vector a | 0 \rangle is 0:

\langle 0 | a^\dagger a | 0 \rangle = 0

3. The physical meaning is that the probability of the system being at state a | 0 \rangle is 0.
 
In other words, there is no state with an eigen-energy lower than the ground state one.
 
 
4. For the equation a | 0 \rangle = 0 | 0 \rangle, the 0 at the right is a scalar.
 
 
5. For the equation a | 0 \rangle = 0, the 0 at the right is a zero vector – a state vector with length zero.
 
6. | 0 \rangle is a state vector. However, it is NOT the zero vector.

Instead, it is the state vector of the ground state. Its length is 1 unit.

— Me@2015-11-03 03:26:58 PM
 
 
 
2015.11.04 Wednesday (c) All rights reserved by ACHK

Intellectual Headaches

Game design

They got the key, and then some other stuff happened, and then they reached the door, and were able to open it; but “acquiring the key” and “opening the door” were stored as two separate, disconnected events in the player’s mind.

If the player had encountered the locked door first, tried to open it, been unable to, and then found the key and used it to open the door, the causal link would be unmistakable. You use the key to open the locked door, because you can’t open the locked door without the key.

Math education

I’ve drawn parallels between game design and education before, but it still took me a while to realize that problem-solution ordering issues crop up just as often in the classroom as they do in games.

Remember how, in high school math class, a lot of the work you were doing felt really, really pointless?

Consider Dan Meyer’s question for math educators: if math is the aspirin, then how do you create the headache?

In other words: if you introduce the solution (in this case, a new kind of math) before introducing the kind of problems that it’s meant to solve, the solution is likely to come across as pointless and arbitrary. But if you first let students try to tackle these problems with the math they already understand, they’re likely to come away with a kind of intellectual “headache” – and, therefore, to better understand the purpose of the “aspirin” you’re trying to sell.

Functional programming

— Locked doors, headaches, and intellectual need

— 27 October 2015

— Affording Play

Here are some excerpts of an elegant essay. Please go to the author’s website to read the whole.

— Me@2015-11-03 03:46:41 PM

2015.11.03 Tuesday ACHK

注定外傳 1.11

Can it be Otherwise? 1.11

換句話說,某一件事件是否「必然」,不會是絕對的;而是相對於某個「觀測準確度」而言。例如:

甲:這次數學考試我不合格。那是不是必然的呢?

乙:你可以反問:「如果遇到相同的情境,可不可以有不同的結果?」

那樣,你就可以知道,答案是「非必然」,因為,參加這次考試的同學中,有很多也是合格的。

甲:那不算是「相同的情境」。我問的是「我不合格,是不是必然?」

我和其他人不同,所以,即使是面對同一份試題,也不算是「相同的情境」。不同的人有不同的基因,繼而有不同的天資。

乙:那怎樣才算「相同情境」?

甲:應該討論「同一個人」。

乙:那樣,你數學考試不合格,答案都是「不注定」,因為,你在眾多數學考試中,有很多時也是合格的。

甲:那不算是「相同的情境」。我問的是「這次數學考試」。不同的試卷,有不同的難度。

乙:那樣,你試一試再次考同一份試卷。如果合格,那就可以證明,你的數學考試不合格,是偶然,並非必然。

甲:那不算是「相同的情境」。我問的是「這次數學考試」。

相同的試卷,第二次做的時候,已有額外的記憶;例如,已知會出哪幾道題目。那又怎算是「相同的情境」呢?

乙:那怎樣才算是「相同的情境」呢?

依你的講法,你要是「同一個人,同一份試卷,同一次」,才算是「相同的情境」。那樣,你原本的問題「那次數學考試,是否注定不合格」,就會變成了一條「廢問題」。

剛才已經講過,問一件事件是否注定,就相當於問:

下次如果遇到相同的情境,可不可以有不同的結果?

但是,你卻在問了之後,認為那是「下次」,不是「那一次」,所以不算是「相同的情境」。

那樣的話,唯一同「那一次」相同的情境,就真的只有「那一次」。「那次數學考試,是否注定不合格」的唯一可能答案,就是「是」,因為,「那一次」已經發生了。

過去的事不能改變,所以是必然的。

— Me@2015-10-29 03:10:19 PM

Q: Can it be otherwise?

A: What is “it”?

— Me@2015-10-29 03:10:14 PM

2015.11.03 Tuesday (c) All rights reserved by ACHK

注定外傳 1.10

Can it be Otherwise? 1.10

我們先回顧一下,今天的討論。首先,我們提到:

當一個人問一件事是不是注定時,意思往往是問:

下次如果遇到類似的情境,可不可以有不同的結果?

(問:如果只是「類似」,當然可以有不同結果。你應該直接問:

下次如果遇到相同的情境,可不可以有不同的結果?

』)

我不能話你這個講法錯。但是,如果你真是這樣問,我大概只可以答「不可以」,因為,如果真的是「百份百相同」的情境,又怎可能有不同的結果呢?

(問:不是呀。在量子力學中,即使有兩組百分百一樣的物理系統,即使它們獲得完全相同的輸入,都可能有不同的輸出。)

你大概正確。但是,你要留意,量子力學中的『百分百一樣』物理系統,未必是你心目中的『百分百一樣』。

然後,我用了四個要點,解釋了為什麼,量子力學中的「百分百一樣」物理系統,未必是你心目中的「百分百一樣」。

綜合以上解釋,你會知道,兩個物件,或者兩個物理系統的「相同」,不會是絕對的;而是相對於某個準確度,或者相對個別性質而言。

「相同」的意思,並不是指「沒有可能找到任何分別」。

「相同」的意思是「分別小到不易察覺」。

而「類似」,則是指「分別不大」。

在這個背景之下,在討論「注定問題」時,

下次如果遇到類似的情境,可不可以有不同的結果?

下次如果遇到相同的情境,可不可以有不同的結果?

」,

其實意思一樣。

當你問前者時,我可以追問:「情境有多類似?類似到什麼程度?」

當你問後者時,我亦可以反問:「那個『相同』,是相對於哪個『觀測準確度』而言?」

既然在這個上文下理中,意思一樣,方便起見,我把這兩個講法,統一為後者:

下次如果遇到相同的情境,可不可以有不同的結果?

只要答到這個問題,你就會知道,某一件事件是否「注定」,或者「必然」。

但是,這個問題的答案,取決於「相同」的意思;而兩個情境「是否相同」,又取決於「相對於哪個『觀測準確度』而言」。

換句話說,某一件事件是否「必然」,不會是絕對的;而是相對於某個「觀測準確度」而言。

— Me@2015-10-29 10:12:16 PM

2015.10.29 Thursday (c) All rights reserved by ACHK

Exercise 6a (Corrected version)

You Could Have Invented Monads! (And Maybe You Already Have.)

Show that f' * unit = unit * f' = bind f'

——————————

f :: a -> b
f' :: a -> m a
unit :: a -> m a

lift f = unit . f
f' = lift f

The lift function in this tutorial is not the same as the liftM in Haskell. So you should use lift (but not liftM) with bind.

— Me@2015-10-13 11:59:53 AM

(f' * g') xs
= ((bind f') . (bind g')) xs

bind f' xs = concat (map f' xs)
unit x = [x]

bind unit xs
= concat (map unit xs)
= concat (map unit [x1, x2, ...])
= concat [unit x1, unit x2, ...]
= concat [[x1], [x2], ...]
= [x1, x2, ...]
= xs

(f' * unit) (x:xs)
= bind f' (bind unit (x:xs))
= bind f' (concat (map unit (x:xs)))
= bind f' (concat (map unit [x1, x2, ...]))
= bind f' (concat [[x1], [x2], ...])
= bind f' [x1, x2, ...]
= concat (map f' [x1, x2, ...])
= concat [f' x1, f' x2, ...]
= concat [(unit . f) x1, (unit . f) x2, ...]
= concat [(unit (f x1)), (unit (f x2)), ...]
= concat [[f x1], [f x2], ...]
= [f x1, f x2, ...]

(unit * f') (x:xs)
= ((bind unit) . (bind f')) (x:xs)
= bind unit (bind f' (x:xs))
= bind unit (concat (map f' (x:xs)))
= bind unit (concat (map f' [x1, x2, ...]))
= bind unit (concat [f' x1, f' x2, ...])
= bind unit (concat [(unit . f)  x1, (unit . f) x2, ...])
= bind unit (concat [(unit (f x1)), (unit (f x2)), ...])
= bind unit (concat [[f x1], [f x2], ...])
= bind unit [f x1, f x2, ...]
= concat (map unit [f x1, f x2, ...])
= concat [[f x1], [f x2], ...]
= [f x1, f x2, ...]

— Me@2015-10-15 07:19:18 AM

If we use the identity bind unit xs = xs, the proof will be much shorter.

(f' * unit) (x:xs)
= ((bind f') . (bind unit)) (x:xs)
= bind f' (bind unit (x:xs))
= bind f' (x:xs)

(unit * f') (x:xs)
= ((bind unit) . (bind f')) (x:xs)
= bind unit (bind f' (x:xs))
= bind f' (x:xs)

— Me@2015-10-15 11:45:44 AM

2015.10.15 Thursday (c) All rights reserved by ACHK

Problem 14.3b3

A First Course in String Theory
 
 
14.3 Massive level in the open superstring.
 
~~~
 
What is a zero mode?
 
p.315 “Being zero modes, these creation operators do not contribute to the mass-squared of the states.”
 
 
How come there are creation operators that do not contribute to the mass-squared of the states?
 
Before each creation operator, there is a multiple which is the same as the absolute value of the index of the creation operators.
 
If an index can be zero, the corresponding term can be zero.
 
— Me@2015.09.26 08:44 PM
 
 
Consider the NS-sector:
 
Equation (14.37):
 
M^2 = \frac{1}{\alpha'} \left( \frac{-1}{2} + N^\perp \right)
 
N^\perp = \sum_{p=1}^\infty \alpha_{-p}^I \alpha_p^I + \sum_{r=\frac{1}{2}, \frac{3}{2} ...} r b_{-r}^I b_r^I
 
For the NS sector, the r values in b^I_{r} are half-integers, thus cannot be zero. So every creation operator b_{-r}^I contributes to the mass-squared.
 
(p.312 “… the negatively moded coefficients b_{-1/2}^I, b_{-3/2}^I, b_{-5/2}^I, …, are creation operators, …”)
 
 
Consider the R-sector:
 
Equation (14.53):

M^2 = \frac{1}{\alpha'} \sum_{n \ge 1} \left( \alpha_{-n}^I \alpha_{n}^I + n d_{-n}^I d_n^I \right)
 
For the R sector, the n values in d^I_n are integers, thus can be zero. So some of the creation operators d^I_{-n} are zero modes.
 
p.315 “… the eight fermionic zero modes d_0^I…”
 
— Me@2015-10-11 11:01:44 AM
 
 
 
2015.10.11 Sunday (c) All rights reserved by ACHK

同情地理解

「同情地理解」的意思是,從對方的情境中,去理解對方的言論。

當別人的言論錯漏百出時,未必需要立刻否定;你可以易地而處,嘗試估計對方為何要那樣說,企圖要表達的真正意思是什麼。

但是,自己發表言論時,則不應假設,別人會同情地理解;因為,如果自己的言論,時常要別人同情地理解,才能有機會理解到的話,那會反映你的語言邏輯能力,十分有問題。

— Me@2015-10-07 08:41:51 AM

2015.10.08 Thursday (c) All rights reserved by ACHK

注定外傳 1.9

Can it be Otherwise? 1.9

換而言之,兩樣東西,不會「絕對相同」。

(這裡的「東西」,是指宏觀的物理系統。至於兩粒微觀粒子,則有可能「全同」。但那是另一個話題,容後再談。)

第四,即使假設了,有一個情況是,你有一件超特級的量度儀器,可以準確到小數後無限個位;而用它來量度兩樣東西(甲和乙)時,發現它們竟然,真的完全百分百,在任何方面也「絕對相同」,邏輯問題仍然存在,因為,它們至少,會佔有不同的空間,即是處於不同的位置。

(問:那如果連位置都相同呢?)

那甲和乙就再不是「兩」件東西,而根本是同一件東西。只不過,那一件東西,有兩個名字或者身份而已。

叫得做「兩」個物理系統,就總有不同之地方。

— Me@2015-10-07 02:52:21 PM

2015.10.07 Wednesday (c) All rights reserved by ACHK

Exercise 6a

You Could Have Invented Monads! (And Maybe You Already Have.)

Show that f * unit = unit * f

——————————

(f * g) (x, xs)
= ((bind f) . (bind g)) (x, xs)

bind f x = concat (map f x)

(f * unit) (x:xs)
= bind f (bind unit (x:xs))
= bind f (concat (map unit (x:xs)))
= bind f (concat (map unit [x1, x2, x3, ...]))
= bind f (concat ([[x1], [x2], [x3], ...]))
= bind f [x1, x2, x3, ...]
= concat (map f [x1, x2, x3, ...])
= concat [f x1, f x2, f x3, ...]
= [f x1, f x2, f x3, ...]

(unit * f) (x:xs)
= ((bind unit) . (bind f)) (x:xs)
= bind unit (bind f (x:xs))
= bind unit (concat (map f (x:xs)))
= bind unit (concat (map f [x1, x2, ...]))
= bind unit (concat [f x1, f x2, ...])
= bind unit [f x1, f x2, ...]
= concat (map unit [f x1, f x2, ...])
= concat [[f x1], [f x2], ...]
= [f x1, f x2, ...]

— Me@2015.07.20 09:00 PM

2015.10.06 Tuesday (c) All rights reserved by ACHK

Problem 14.3b2

A First Course in String Theory
 
 
14.3 Massive level in the open superstring

~~~

How come R sector has a factor 16 while NS sector has not?

Equation (14.66):

f_{NS}(x) = \frac{1}{\sqrt{x}} \prod_{n=1}^\infty \left( \frac{1+x^{n - \frac{1}{2}}}{1-x^n} \right)^8

Equation (14.68):

f_R(x) = 16 \prod_{n=1}^\infty \left( \frac{1+x^n}{1-x^n} \right)^8

p.319 “The overall multiplicative factor appears because each combination of oscillators gives rise to 16 states by acting on each of the available ground states.”

p.319 “We note that the R coefficients are actually double the corresponding NS coefficients. This is not a coincidence, as we will see in the following section.”

p.320 “We have seen that the Ramond sector has world-sheet supersymmetry: there are equal numbers of fermionic and bosonic states at each mass level.”
 
 
With the factor 16, how come the R coefficients are only double, but not 16 times as big as the corresponding NS coefficients?
 
It is caused by the difference of x^n and x^{n-\frac{1}{2}}.

— Me@2015.10.06 08:23 AM
 
 
 
2015.10.06 Tuesday (c) All rights reserved by ACHK

Person of Interest

Person of Interest is an American science fiction crime drama television series created by Jonathan Nolan that premiered on September 22, 2011, on CBS. It is executive produced by Nolan, alongside J. J. Abrams, Bryan Burk, and Greg Plageman. It stars Jim Caviezel as John Reese, a former CIA agent who is presumed dead. He is approached by a mysterious billionaire named Harold Finch (Michael Emerson), who is trying to prevent violent crimes before they happen by using an advanced surveillance system dubbed “The Machine”, which turns out to have evolved into a sentient AI.

— Wikipedia on Person of Interest (TV series)

2015.10.05 Monday ACHK

Inception 4.1

潛行凶間 4.1 | 如何拯救眾生 5.1 | 無限複製 5.1

.

What’s the most resilient parasite? A bacteria? A virus? An intestinal worm?

An idea.

Resilient, highly contagious. Once an idea’s taken hold in the brain it’s almost impossible to eradicate. A person can cover it up, ignore it – but it stays there.

Information, yes. But an idea? Fully formed, understood? That sticks… (taps forehead) In there, somewhere.

— Inception (film)

— Me@2011.01.18

.

.

.

2011.01.18 Tuesday ACHK

注定外傳 1.8

Can it be Otherwise? 1.8

凡是量度,都只會得到近似值,所以,只能討論「近似同一性」(量度準確度)。亦即是話,當我們說,那兩支筆的長度「相同」時,是指它們的長度,相近到以當時的肉眼和儀器,暫時感受不到分別而已。

(問:那如果是數數目(使用整體)的情況呢?

例如:你有 10 隻手指,我又有 10 隻手指。那樣,這兩個 10,不就是「絕對相同」嗎?)

應該是「確切相同」,而不是「絕對相同」。在這裡,「確切」的意思是,不再只是近似。

那兩個數字,不再只是「相似」(近似相同),而根本是同一個數字。

凡是量度,都只會得到近似值,所以,只能討論「近似同一性」(量度準確度)。凡是數數,則有可能得到確切值,所以,可以討論「確切同一性」(數數準確度)。

(問:那為什麼不可以說「絕對相同」?)

幾乎可以,但未臻完善。

如果只是討論那兩個整數,兩者的確是「絕對相同」。

但是,根據現在的上文下理,我們要考慮的,不只那兩個整數。我們還要考慮的是,「兩個物件,或者兩個物理系統,有沒有可能完全相同?」

在量子力學中,即使有兩組百分百一樣的物理系統,即使它們獲得完全相同的輸入,都可能有不同的輸出。

下次如果遇到相同的情境,可不可以有不同的結果?

換句話說,正式要比較的,不只是(例如)兩個人的手指數目,而是那兩個人。

在這個情況下,相對於手指數目而言,他們就絕對相同。但是,相對於整體而言,他們就沒有可能,在所有方面,都百分百相同。例如,他們的左手食指長度,只可能近似相同,不可能確切相同。

由於二人只可能「相對於某些方面」而言,絕對相同。這個「絕對」,並不是真的那麼「絕對」。那樣,用字就應嚴格一點。

「絕對」,應該用作「相對」的相反。而「近似」的相反,則應該用「確切」。

兩件物件,或者兩個物理系統,不可能在所有方面,都確切相同、完全一樣,因為,比較兩者時,總會有些量度(例如左手食指長度)的成份。

凡是量度,都只會得到近似值,所以,只能討論『近似同一性』(量度準確度)。

換而言之,兩樣東西,不會「絕對相同」。

(這裡的「東西」,是指宏觀的物理系統。至於兩粒微觀粒子,則有可能「全同」。但那是另一個話題,不宜在這裡詳述。)

— Me@2015-10-04 07:32:32 AM

2015.10.04 Sunday (c) All rights reserved by ACHK