Generalizing a problem

One of the many articles on the Tricki that was planned but has never been written was about making it easier to solve a problem by generalizing it (which initially seems paradoxical because if you generalize something then you are trying to prove a stronger statement). I know that I’ve run into this phenomenon many times, and sometimes it has been extremely striking just how much simpler the generalized problem is.

edited Sep 26 2010 at 8:34
gowers

Great question. Maybe the phenomenon is less surprising if one thinks that there are ∞ ways to generalize a question, but just a few of them make some progress possible. I think it is reasonable to say that successful generalizations must embed, consciously or not, a very deep understanding of the problem at hand. They operate through the same mechanism at work in good abstraction, by helping you forget insignificant details and focus on the heart of the matter.

answered Sep 26 2010 at 10:27
Piero D’Ancona

— Generalizing a problem to make it easier

— MathOverflow

A general case has less information (details) than a special case. 

— Me@2012.03.10

2012.03.13 Tuesday (c) All rights reserved by ACHK

明不明白, 2.1

這段改編自 2010 年 3 月 20 日的對話。

我以前提過,有一本書叫做「I am a Strange Loop」。書內研究的其中一個要點是,怎樣才為之「明白」?

作者發現,在很大程度上,「明白」就是「比喻」。

(安:什麼意思?)

你試想想,我們學習新東西時,在什麼情況下,才有「明白」的感覺呢?

第一種情況是,把新東西表達成舊東西。例如,「3 乘以 2」為什麼會等如「6」呢?

那是因為「乘」的意思是,把同一個數,加很多次:

3 x 2 = 3 + 3 = 6

第二種情況是,把新東西反覆背誦和運用,令到自己對它熟練到,成為一個習慣為止。那樣,即使沒有任何實質的理解,你也會有「明白」的幻覺。例如,小時候你背誦了「乘數表」,所以你覺得自己明白,為何「九八七十二」。

9 x 8 = 72

但是,你之所以「明白」,並不是因為,你曾經把「9 x 8」化成加數,真正如實地運算「9 + 9 + 9 + 9 + 9 + 9 + 9 + 9」。

第三種情況是,把新東西類比成熟悉的事物。例如,如果你教一個小孩「物質是由粒子組成的」,他可能會一頭霧水。要他「明白」的話,你可以試試這樣說:

物質,是由一些超微小的彈珠(波子)組成的。那些超微小的彈珠,叫做「粒子」。

(安:第三種情況,可以看成第一種的一個特例,因為它都是把未知的東西,翻譯成已知的事物。)

可以這樣說。但是,第一種中的翻譯,是「解釋」;而第三種的,是「比喻」。或者我這樣分比較好:

第一種「明白」,是通過「解釋」而得來的。

第二種是通過「熟習」。

第三種是用「比喻」。

我現在想集中討論的,是第三種情況。

— Me@2012.03.13

2012.03.13 Tuesday (c) All rights reserved by ACHK