Quantum observer 1.2

Single-world interpretation, 7.4

What if I have a microscopic measuring device, B, as a “quantum observer”?

If a particle A is in a superposition of eigenstates, another particle B, as a micro-observer, can also be in a superposition of eigenstates, before or after the observation.

An observation on A by B is an interaction between A and B.

If after the observation/interaction, B is in a superposition, what would B see? Would it see A as in a superposition? Or would it see A as in one of the eigenstates?

It depends on whether you regard individual eigenstates of the resulting B as individual particles “B1, B2, …” in multiple “worlds”, or you regard the superposition of all eigenstates of the resulting B as one single particle in this single universe. In other words, it depends on how you use the label “B”.

The identification of particle B as the superposition of all its eigenstates is more reasonable, because that is compatible with the meaning of the word “observer” in ordinary quantum mechanics. In ordinary quantum mechanics, an observer is a measuring device. A measuring device is a macroscopic object, following classical physical laws. If we have to express the classical laws in terms of quantum mechanics, we say that each classical state of that macroscopic object is a superposition of a lot of quantum states of a lot of the constituent particles.

Classical objects follow the Principle of Least Action, which is due to the superposition of a lot of microstates of the particles. If there is no quantum superposition, there is no Principle of Least Action. Classical mechanics does not work.

— Me@2013.01.14

2013.01.17 Thursday (c) All rights reserved by ACHK

Science

In both social and natural sciences, the body of positive knowledge grows by the failure of a tentative hypothesis to predict phenomena the hypothesis professes to explain; by the patching up of that hypothesis until someone suggests a new hypothesis that more elegantly or simply embodies the troublesome phenomena, and so on ad infinitum.

— Inflation and Unemployment

— Nobel Memorial Lecture, December 13, 1976

— Milton Friedman

2013.01.17 Thursday ACHK

對稱情境 1.2

這段改編自 2010 年 6 月 15 日的對話。

有兩個袋。每個袋中都有十張卡紙,而每張卡紙上,都有由 1 到 10 的其中一個數字,沒有重複。現在,甲要由第一個袋中,抽一張卡紙出來。而乙則要在另一個袋中,抽另一張卡紙出來。假設整個過程是隨機的,即是各個可能性的機會均等。

如果甲的數字大過乙,那就為之「甲勝」。如果乙的數字大過甲,那就為之「乙勝」。已知「甲勝」的機會率是 q。問題是,「甲乙打和」的機會是多少?

甲乙所面對的情境,完全相同,所以「甲勝」和「乙勝」的機會率,不會有分別。這種「情境相同」的情況,學名叫做「對稱」。

(CYM:為何沒有分別?)

這裡有兩點需要明白。第一點是,何謂「對稱情境」。第二點是,為何「對稱情境」會導致「甲乙的機會率相同」。

第二點「只能意會 不能言傳」。如果你不是立刻感受到,我亦很難透過直接的解釋,令到你明白。我唯有詳細一些,解釋第一點的「何謂對稱情境」,從而間接令你感受到第二點的「為何機會率相同」。

你現在先試試站在甲的立場,體會一下他感受到什麼。他看的是:

自己的袋中有 1 到 10 的十張卡紙。而對方的袋中,又同樣有 1 到 10 的十張卡紙。如果我抽到的卡紙,數字比對方的大,我就獲勝。

然後,你再站在乙的立場,體會一下他又感受到什麼。他看的是:

自己的袋中有 1 到 10 的十張卡紙。而對方的袋中,又同樣有 1 到 10 的十張卡紙。如果我抽到的卡紙,數字比對方的大,我就獲勝。

你會發覺,甲乙的處境一模一樣,隻字不差。同一個處境,就會有同一個結果。(那就是「科學」的意思。)所以,「甲勝」和「乙勝」的機會必定相同。

— Me@2013.01.17

2013.01.17 Thursday (c) All rights reserved by ACHK