The 4 bugs of quantum mechanics popular, 1.6

3.1  Probability value is totally objective. Wrong.

3.2

A wave function (for a particular variable) is an intrinsic property of a physical system.

“Physical system” means the experimental-setup design, which includes not just objects and devices, but also operations.

In other words, “where and when an observer should do what during the experiment” is actually part of your experimental-setup design, defining what probability distribution (for any particular variable) you (the observer) will get.

If the experimenter does not follow the original experiment design, such as not turning on the detector at the pre-defined time, then he is actually doing another experiment, which will have a completely different probability distribution (for any particular variable).

— Me@2022-02-18 07:40:14 AM

— Me@2022-02-14 10:35:27 AM

.

Note that with respect to the physical variable X you are going to measure, the system is always classical, because you have to activate the detector in order to measure that variable.

Once “activating the detector” is part of the experimental-setup, in a non-accurate but easier to understand language, that variable is already in a mixed state since the beginning of the experiment.

The uncertainty is classical probability, which is due to lack of detailed knowledge, not quantum probability, which is due to lack of definition (in terms of physical phenomena difference).

— Me@2022-01-29 10:38:19 PM

In an accurate language, that design has already given the experiment-setup a property that “X is in a mixed state”, meaning that the probabilities assigned to different possible values of X are actually classical probabilities.

.

In the most basic double-slit experiment, assume that the probability of the going through either slit is \displaystyle{\frac{1}{2}}.

In the standard quantum mechanics language:

— Me@2022-02-22 07:01:40 PM

— Me@2022-02-21 07:17:28 PM

.

.

2022.02.23 Wednesday (c) All rights reserved by ACHK

The 4 bugs of quantum mechanics popular, 1.5

3.1 Probability value is totally objective. Wrong.

A probability value is not only partially objective, but also partially subjective. When you get a probability value, you have to specify which observer the value is with respect to. Different observers can get different probabilities for the “same” event.

Also, the same observer at 2 different times should be regarded as 2 different observers.

For example, for a fair dice, before rolling, the probability of getting an 2 is \displaystyle{\frac{1}{6}}. However, after rolling, the probability of getting an 2 is either \displaystyle{0} or \displaystyle{1}, not \displaystyle{\frac{1}{6}}. So the same person before and after getting the result should be regarded as 2 different observers.

A major fault of the many-worlds interpretation of quantum mechanics is that it uses an unnecessarily complicated language to state an almost common sense fact that any probability value is partially subjective and thus must be with respect to an observer. There is no “god’s eye view” in physics.

— Me@2017-05-10 07:45:36 AM

— Me@2022-02-14 10:36:52 AM

Wave functions encode probabilities. So each wave function is partially objective and partially observer-dependent. In other words, a wave function encodes the relationship between a physical system and an observer/experimenter.

— Me@2022-02-20

.

.

2022.02.22 Tuesday (c) All rights reserved by ACHK

The 4 bugs of quantum mechanics popular, 1.4

A misnomer collection:

2.2.1.

Wave function is not a wave. It is not a physical wave.

2.2.2.

Uncertainty principle is not about uncertainty. It is not directly related to uncertainty.

Uncertainty principle is not a principle. It is not even a physical law. Instead, it is a statistical relation. It is an inequality about the standard deviations of two conjugate variables.

2.2.3.

Superposition state is not a superposition. It is not a physical superposition. It is not a superposition of physical waves.

Superposition state is not a state. Instead, it is a property of a physical system. It is a statistical property of a variable of an experimental setup.

2.2.4.

Quantum mechanics is not quantum. It is not just about quantum (particle of energy).

Quantum mechanics is not mechanics. It is not just about mechanics. It is not just physical laws. Instead, it is a set of meta-laws, laws that physical laws themselves need to follow. It is an operating system on which physical laws can run.

— Me@2022-02-20 06:44:32 AM

.

.

2022.02.21 Monday (c) All rights reserved by ACHK

The 4 bugs of quantum mechanics popular, 1.3

The common quantum mechanics “paradoxes” are induced by 4 main misunderstandings.

1.  A wave function is of a particle. Wrong.

2.1  A system's wave function exists in physical spacetime. Wrong.

physical definition

~ define the microscopic events in terms of observable physical phenomena such as the change of readings of the measuring device

~ define unobservable events in terms of observable events

— Me@2022-01-31 08:33:01 AM

superposition

~ lack of the existence of measuring device to provide the physical definitions for the (difference between) microscopic events

— Me@2022-02-12 10:22:09 AM

a physical variable X is in a superposition state

~ X has no physical definition

~ in the experiment-setup design, no measurement device is allowed to exist to provide a definition of different possible values of X

— Me@2022-02-18 02:04:45 PM

2.2   A superposition state is a physical superposition of a physical state. Wrong.

“Quantum state” is a misnomer. It is not a (physical) state. It is a (mathematical) property. It is a system property (of a physical variable) of an experimental-setup design.

“State” and “property” have identical meanings except that:

State is physical. It exists in physical time. In other words, a system's state changes with time.

Property is mathematical. It is timeless. In other words, a system's property does not change. (If you insist on changing a system's property, that system will become, actually, another system.)

For example, “having two wheels” is a bicycle’s property; but the speed is a state, not a property of that bicycle.

superposition state

~ physically-undefined property

.

In the phrase “superposition state”, the word “superposition” is also a misnomer.

A superposition state is not of physical waves, nor of physical states. Instead, it is a superposition of physical meanings of some variables in a physical system.

a physical variable X is in a superposition state

~ X is a physically-undefined property (of the physical system)

— Me@2022-02-18 02:04:45 PM

— Me@2022-02-20 06:44:32 AM

.

.

2022.02.21 Monday (c) All rights reserved by ACHK

The 4 bugs of quantum mechanics popular, 1.2

The common quantum mechanics “paradoxes” are induced by 4 main misunderstandings.

1.  A wave function is of a particle. Wrong.

2.1  A system's wave function exists in physical spacetime. Wrong.

So a wave function (for a particular variable) is an intrinsic property of a system. It is a mathematical property, not a physical state, of the physical system (the experimental setup). It does not evolve in time.

A wave function looks like evolving in physical time because it is a (mathematical) function of time.

But being a mathematical function of time only means that you can use the wave function to calculate the probabilities of a physical variable having different particular values at different times.

.

An electromagnetic wave mathematical equation, which does not exist in physical spacetime, has its corresponding physical wave—-electromagnetic wave, which exists in physical spacetime.

However, a quantum wave function mathematical equation has no corresponding physical wave.

A wave function encodes a probability distribution; it can only correspond to a probability distribution, which is also a mathematical entity only.

A probability distribution can be a function of space and time. But that does not mean that the probability distribution exists in physical spacetime.

Any wave physical, such as electromagnetic wave, can be measured by a physical device.

In a sense, you cannot change a wave function; you can only replace it with another by replacing the physical system with another.

So whether the wave function of a variable is in superposition is an intrinsic property of a system, decided by the experiment’s designer.

Also, because of the existence of incompatible variable pairs, for any system, there must be some variables in a superposition, while others not.

— Me@2022-02-20 06:44:32 AM

.

.

2022.02.20 Sunday (c) All rights reserved by ACHK

The 4 bugs of quantum mechanics popular

The “para” in “paradox” means “meta”. The original meaning of the word “paradox” is

an error due to mixing language levels—-the object level and the meta level.

However, people have misused the word “paradox” a lot, using it to label anything unexpected. For example, in quantum mechanics, there are many so-called “paradoxes” that may be not really paradoxes.

However, among those quantum mechanics “paradoxes”, some of them are really paradoxes, whose existences are really due to mixing the object time level and the meta-time level.

The time within a story is called the “object time”. The time of the story’s writer or reader is called the “meta-time”.

The physical time in which an experiment is conducted is the object time. The time in which an experiment is designed is the meta-time. The meta-time of an experiment is its designer’s time level.

.

“Wave function collapse” is not a physical process. Instead, it is mathematical. It just means that we have to replace the wave function with another if we replace the system with another.

In other words, it is not a physical event that happens during the operation of the experiment. Instead, it “happens” when you replace one experiment design with another. In this sense, “wave function collapse” happens not in the experiment’s time, but in the experiment’s meta-time, the time level of the experiment designer.

wave function collapse

~ probability distribution change (replacement) due to replacing “the experiment without measurement device” with “the experiment with measuring device“ (for a particular physical variable)

.

The common quantum mechanics “paradoxes” are induced by 4 main misunderstandings.

1.  A wave function is of a particle. Wrong.

Instead, it is of the system (the experiment setup). It is of a variable of the physical system.

Actually, a system has more than one wave functions. Each physical variable of that system has its own wave function.

2.1  A system's wave function exists in physical spacetime. Wrong.

Instead, the wave function exists in the mathematical abstract space. With respect to an individual physical variable, different physical systems give different probability distributions, which are encoded in different wave functions.

So a wave function (for a particular variable) is an intrinsic property of a system. It is a mathematical property, not a physical state, of the physical system (the experimental setup). It does not evolve in time.

In a sense, you cannot change a wave function; you can only replace it with another by replacing the physical system with another.

— Me@2022-02-19 04:21:38 PM

.

.

2022.02.19 Saturday (c) All rights reserved by ACHK

Book Underlining Principle

間書原理 0

.

When you are reading, you would underline key words. At one extreme, you underline nothing. So you wouldn’t know which parts are important. At the opposite extreme, you underline everything. Then you also wouldn’t know which parts are important. So the effect of underlining nothing is exactly the same as underlining everything.

This is an example of the principle that

The extreme of Yin is Yang

The extreme of Yang is Yin

陽之極為陰 陰之極為陽

That is why I call the principle the Book Underlining Principle.

The source of this principle is that when you push something to one extreme at the object level, that action may also push it to the opposite extreme at the meta level.

For example, when you underlining all the words, at the object level, it means that everything is important. However, at the meta level, “being important” must be relative to something else. You need to distinguish the important words from the unimportant ones. When you underlining all the words, there is no such distinction. So “being important” has become meaningless.

— Me@2021-12-13 11:08 AM

— Me@2021-12-26 03:39 PM

.

.

2021.12.26 Sunday (c) All rights reserved by ACHK

Alfred Tarski 4

Godel 20

.

[guess]

A system can be both complete and consistent because in that system, a metatheorem cannot be translated into a theorem, so a paradox cannot be made.

[guess]

— Me@2017-04-10 10:40:38 AM

.

.

2021.04.27 Tuesday (c) All rights reserved by ACHK

Omnipotence 4.2

When responding to the question “can X create a stone that it cannot lift”, another flawed argument is

X can create the stone that it cannot lift but it chooses not to create it. So there is no stone it cannot lift yet. So X has not failed the omnipotence test.

This argument is wrong.

.

When we ask “can X choose to create a stone that it cannot lift”, we are discussing whether X has an ability. When we discuss ability, it is always about a potential, a possibility.

Y is able to do action B

always means that

“Y does B” is possible,

which is equivalent to

“Y does B” is not contradictory to any logical laws nor physical laws.

“Whether Y has already done B or will do B” is not the point.

.

If we allow such “Y can do B but it chooses not to” argument, then anyone is omnipotent. For example,

Can you fly?

I can fly but I choose not to. So even though you have never seen me flying and will never see me flying, it is not because I cannot fly; it is just because I choose not to.

Can you choose to fly?

I can choose to fly but I choose not to choose to fly.

This type of arguments make the word “can“ meaningless.

— Me@2020-03-30 06:52:58 AM

.

.

2020.04.19 Sunday (c) All rights reserved by ACHK

Omnipotence 4.1

Please read these 2 posts first:

For all, 3 | Omnipotence

For all, 3.2 | Omnipotence 2

You can find them by searching “omnipotence” using this blog’s search box.

— Me@2020-04-08 03:17:34 PM

.

If X is omnipotent, X can create a stone that it cannot lift. Then X is not omnipotent, because there is a stone it cannot lift. So omnipotence is a self-contradictory concept.

What if we define omnipotence not as “being able to do anything” but as “being able to do anything except logical self-contradictory ones“?

In order words, omnipotence means that being able to do anything logically possible. Omnipotence does not mean that being able to do also logically impossible things.

This re-definition is not useful, because the original meaning of “being omnipotent” already is “being able to do anything except logical self-contradictory ones“.

There is no re-definition needed. You can only say that the re-definition clarifies the original meaning of “being omnipotent”. However, this clarification cannot eliminate the self-contradictory nature of the meaning of “omnipotence” itself. For example, the following argument is wrong.

If X is omnipotent, “X can create a stone that it cannot lift” is self-contradictory because it is contradictory to “X is omnipotent”.

Since “X can create a stone that it cannot lift” is logically impossible, it should not be a requirement of being omnipotent.

This argument is wrong because:

1. “X can create a stone that it cannot lift” is not SELF-contradictory.

2. “X can create a stone that it cannot lift” is not logically impossible, because, for example, even a human being can create an object that he cannot lift. For example, human beings can create a car that no single person can lift.

Then someone might keep arguing that

But if X is omnipotent, “X can create a stone that it cannot lift” means that “X is omnipotent and X can create a stone it cannot lift”, which is logically impossible. So “X cannot create a stone that it cannot lift” does not make X non-omnipotent.

In other words, “whether X can create a stone that it cannot lift” should not be the requirement of the omnipotence test.

The argument is wrong, because what we are questioning is

Can someone X be omnipotent?

or

Is omnipotence logically possible?

.

Remember:

“Being logically possible” means “not self-contradictory”.

.

If “X is omnipotent” is true,

then “X can create a stone that it cannot lift” is true.

Then “there is a stone that X cannot lift” is true.

Then “X is not omnipotent” is true.

But “X is not omnipotent” is contradictory to the assumption “X is omnipotent“.

So “X is omnipotent” is self-contradictory.

So the question “whether an entity X can be omnipotent and create a stone that it cannot lift” is illegitimate because “an entity X is omnipotent” is logically impossible in the first place. It should not be placed within a question.

Note that our omnipotent test is

“whether an entity X can create a stone that it cannot lift”,

NOT “whether an entity X can be omnipotent and create a stone that it cannot lift”,

NOR “whether an omnipotent entity X can create a stone that it cannot lift”.

— Me@2020-03-30 06:52:58 AM

.

.

2020.04.10 Friday (c) All rights reserved by ACHK

Two dimensional time 5.2.3

The first time direction is uncontrollable; the second is controlled by making choices, traveling through different realities. Future is a set of parallel universes.

— Me@2017-12-15 10:59:49 AM

.

The first time direction, which is along the timeline, is uncontrollable, because one can only travel from the past to the future, not the opposite.

The second direction, which is across different timelines, is controlled by making choices, forming different realities.

— Me@2019-12-21 11:03:23 PM

.

.

2019.12.22 Sunday (c) All rights reserved by ACHK

Two dimensional time 5.2.2

time direction ~ direction of change

multiple time directions ~ multiple directions of change

— Me@2019-12-22 04:38:47 PM

.

the first dimension of time ~ direction of change

the second dimension of time ~ direction of change of changes

— Me@2019-12-22 04:46:47 PM

.

.

2019.12.22 Sunday (c) All rights reserved by ACHK

Multiple dimensions of time

Two dimensional time 5.2 | 二次元時間 5.2

.

What would be the implications of multiple dimensions of time?

That means the (past) history itself can change, as commonly seen in time travel stories.

But wouldn’t that be the case with one dimension also?

In reality, there is only one dimension of time, meaning that the state of a system keeps changing, forming the timeline. But the timeline itself cannot be changed once formed. In other words, (past) history cannot be changed.

— Me@2019-08-11 04:07:48 PM

.

.

2019.08.11 Sunday (c) All rights reserved by ACHK

Alfred Tarski, 3

The undefinability theorem shows that this encoding cannot be done for semantic concepts such as truth. It shows that no sufficiently rich interpreted language can represent its own semantics. A corollary is that any metalanguage capable of expressing the semantics of some object language must have expressive power exceeding that of the object language. The metalanguage includes primitive notions, axioms, and rules absent from the object language, so that there are theorems provable in the metalanguage not provable in the object language.

— Wikipedia on Tarski’s undefinability theorem

.

Tarski’s 1969 “Truth and proof” considered both Gödel’s incompleteness theorems and Tarski’s undefinability theorem, and mulled over their consequences for the axiomatic method in mathematics.

— Wikipedia on Alfred Tarski

.

.

2019.07.20 Saturday ACHK

Confirmation principle

Verification principle, 2.2 | The problem of induction 4

.

The statements “statements are meaningless unless they can be empirically verified” and “statements are meaningless unless they can be empirically falsified” are both claimed to be self-refuting on the basis that they can neither be empirically verified nor falsified.

— Wikipedia on Self-refuting idea

.

In 1936, Carnap sought a switch from verification to confirmation. Carnap’s confirmability criterion (confirmationism) would not require conclusive verification (thus accommodating for universal generalizations) but allow for partial testability to establish “degrees of confirmation” on a probabilistic basis.

— Wikipedia on Verificationism

.

Confirmation principle should not be applied to itself because it is an analytic statement which defines synthetic statements.

.

Even if it does, it is not self-defeating, because confirmation principle, unlike verification principle, does not requires a statement to be proven with 100% certainty.

So in a sense, replacing verification principle by confirmation principle can avoid infinite regress.

.

Accepting confirmation principle is equivalent to accepting induction.

“This is everything to win but nothing to lose.”

— Me@2012.04.17

.

.

2019.04.06 Saturday (c) All rights reserved by ACHK

The problem of induction 3.3

“Everything has no patterns” (or “there are no laws”) creates a paradox.

.

If “there are 100% no first order laws”, then it is itself a second order law (the law of no first-order laws), allowing you to use probability theory.

In this sense, probability theory is a second order law: the law of “there are 100% no first order laws”.

In this sense, probability theory is not for a single event, but statistical, for a meta-event: a collection of events.

Using meta-event patterns to predict the next single event, that is induction.

.

Induction is a kind of risk minimization.

— Me@2012-11-05 12:23:24 PM

.

.

2018.12.28 Friday (c) All rights reserved by ACHK