Lessons from the Light, 5

Time’s arrow is due to that the macroscopic observers keep losing the microscopic information about the physical systems.

For simplicity, we consider only classical systems now.

Microscopically, there is no time arrow, because for any two times, t1 and t2, their states have one-one correspondence. In other words, once we know the exact state of a physical system at time t1, we also know the exact state of the system at time t2, and vice versa.

This feature of time may be corresponding to a NDE feature that a dying person moving towards the end of the white tunnel will feel that all the past, present, and future collapse to one point. Some people call that point “the Eternal Now”.

— Me@2013-08-26 6:12 PM

2013.09.02 Monday (c) All rights reserved by ACHK

量子力學 1.7

因果律 1.12 | Verification principle, 5.12

這段改編自 2010 年 4 月 3 日的對話。

即使掌握了一個「量子物理系統」,運作時的所有資料,「隨機性」仍然存在。而這種「量子隨機性」,是來自該個物理系統的「環境」。

這個講法有可能是正確的。但問題是,什麼為之「環境」呢? 

一個物理系統的「環境」,廣義是指「其他東西」,即是「整個宇宙」;狹義是指「周圍附近的東西」。

方便起見,以下我把我們正在討論的假想量子物理系統,簡稱為「甲」;甲的環境,就簡稱為「乙」;「乙」的環境,則簡稱為「丙」;如此類推。

理論上,只要準確預測「環境乙」的演化,物理學家就能準確預測,該個物理系統本身(甲)的演化,把原本的「量子隨機性」排除。

但是,如果你要準確預測「乙」的演化,就相當於要把「乙」的「量子隨機性」排除。換句話說,你要先行準確預測「乙的環境」,即是「丙」的演化。同理,想要了解「丙」,又要先行了解「丁」。如此類推的話,最終你也要牽連「整個宇宙」,才可以完全排除,物理系統「甲」的「量子隨機性」。

無論你所指的「環境」是廣義還是狹義,你也會「牽一髮而動全宇宙」。

— Me@2013.09.02

2013.09.02 Monday (c) All rights reserved by ACHK