Quantum Methods with Mathematica
.
Assume a wavefunction of the form psi[x, t] == f[t] psi[x] and perform a separation of variables on the wave equation.
Show that f[t] = E^(-I w t) where h w is the separation constant. Try the built-in function DSolve.
Equate h w to the Energy by evaluating the [expected] value of hamiltonian[V] in the state psi[x, t].
~~~
Remove["Global`*"] hbar := \[HBar] H[V_] @ psi_ := -hbar^2/(2m) D[psi,{x,2}] + V psi psi[x_,t_] := f[t] psi[x] I hbar D [psi[x,t],t] == H[V] @ psi[x, t] I hbar D [psi[x,t],t] / psi[x,t] == H[V] @ psi[x,t] / psi[x,t]
E1 := I hbar D [psi[x,t],t] / psi[x,t] == H[V] @ psi[x,t] / psi[x,t] Simplify[E1]
E2 := - 1/2 hbar hbar (D[D[psi[x],x],x]/(m psi[x])) == hbar omega DSolve[E2, psi[x], x] E3 := 1/2 hbar 2 i D[f[t],t] / f[t] == hbar omega DSolve[E3, f[t], t]
k psi[x_] := c E^(I k x) psi[x] f[t_] := E^(-I omega t) f[t] psi[x_,t_] := f[t] psi[x] psi[x,t]
E4 := Conjugate[psi[x,t]] H[0] @ psi[x,t] E4 E5 := Simplify[E4] E5 k := Sqrt[2 m omega / hbar] Refine[E5, {Element[{c, omega, m, t, hbar, k, x}, Reals]}]
E6 := Conjugate[psi[x,t]] psi[x,t] Simplify[E6]
.
.
— Me@2022-11-26 07:17:29 PM
.
.
2022.11.28 Monday (c) All rights reserved by ACHK