Laser 2.1

Coherent states 6.1 | Quantum coherence, 6.1

Every-day electromagnetic radiation, such as radio and TV waves, is also an example of near coherent states (macroscopic quantum coherence). That should “give one pause” regarding the conventional demarcation between quantum and classical.

— Wikipedia on Coherent states

In laser, all photons are in-phase with each other.

In other electromagnetic waves, the photons are out of phase. However, they still have constant phase difference (aka coherence), unless the photons are emitted by thermal radiation (thermal light). 

— Me@2011.10.06

However, such a picture is incorrect.

— Me@2011.10.12

In classical optics light is thought of as electromagnetic waves radiating from a source. Often, coherent laser light is thought of as light that is emitted by many such sources that are in phase. Actually, the picture of one photon being in-phase with another is not valid in quantum theory.

— Wikipedia on Coherent states

2011.10.12 Wednesday (c) All rights reserved by ACHK

Coherent states 5

Quantum coherence, 5

Every-day electromagnetic radiation, such as radio and TV waves, is also an example of near coherent states (macroscopic quantum coherence). That should “give one pause” regarding the conventional demarcation between quantum and classical.

— Wikipedia on Coherent states

classical electromagnetic radiation (coherent states)  

versus

laser (macroscopic quantum coherence)

Coherent states and quantum coherence are two different concepts, not directly related to each other.

Coherent states is a kind of states of a particle or a system. It is about the evolution of the wavefunction of a single particle or a system.

Quantum coherence is another concept. It is about pure state: all the particles in the system are in the same pure quantum state. The particles in that system have definite phase relationships. A special case is that all the particles in a system are in-phase. Then the whole system can be represented by a single quantum wavefunction. Such phenomenon is called macroscopic quantum coherence.

Although coherent states and quantum coherence are not directly related, they are indirectly related. If most of the particles in a system are in their own coherent states, which means that each evolves with minimum uncertainty, they are more likely to be quantumly coherent with each other.

— Me@2011.10.06

— Me@2011.10.10

2011.10.10 Monday (c) All rights reserved by ACHK

Freeman Dyson

Certainly the growing rigidity of scientific organizations is a real and serious problem. I like to remind young scientists of examples in the recent past when people without paper qualifications made great contributions. Two of my favorites are: Milton Humason, who drove mules carrying material up the mountain trail to build the Mount Wilson Observatory, and then when the observatory was built got a job as a janitor, and ended up as a staff astronomer second-in-command to Hubble. Bernhardt Schmidt, the inventor of the Schmidt telescope which revolutionized optical astronomy, who worked independently as a lens-grinder and beat the big optical companies at their own game. I tell young people that the new technologies of computing, telecommunication, optical detection and microchemistry actually empower the amateur to do things that only professionals could do before.

Amateurs and small companies will have a growing role in the future of science. This will compensate for the increasing bureaucratization of the big organizations. Bright young people will start their own companies and do their own science.

— Freeman Dyson

2011.10.10 Monday ACHK

辛亥革命一百週年

Coherent states 4

Every-day electromagnetic radiation, such as radio and TV waves, is also an example of near coherent states (macroscopic quantum coherence). That should “give one pause” regarding the conventional demarcation between quantum and classical.

— Wikipedia on Coherent states

2011.10.09 Sunday ACHK

Coherent states in quantum optics

Coherent states 3

In classical optics light is thought of as electromagnetic waves radiating from a source. Often, coherent laser light is thought of as light that is emitted by many such sources that are in phase. Actually, the picture of one photon being in-phase with another is not valid in quantum theory.

Laser radiation is produced in a resonant cavity where the resonant frequency of the cavity is the same as the frequency associated with the atomic transitions providing energy flow into the field. As energy in the resonant mode builds up, the probability for stimulated emission, in that mode only, increases. That is a positive feedback loop in which the amplitude in the resonant mode increases exponentially until some non-linear effects limit it.

As a counter-example, a light bulb radiates light into a continuum of modes, and there is nothing that selects any one mode over the other. The emission process is highly random in space and time (see thermal light). In a laser, however, light is emitted into a resonant mode, and that mode is highly coherent. Thus, laser light is idealized as a coherent state.

— Wikipedia on Coherent states

2011.10.07 Friday ACHK

Quantum machine

Quantum coherence, 4

O’Connell and his colleagues coupled together a mechanical resonator, similar to a tiny springboard, and a qubit, a device that can be in a superposition of two quantum states at the same time. They were able to make the resonator vibrate a small amount and a large amount simultaneously — an effect which would be impossible in classical physics. The mechanical resonator was just large enough to see with the naked eye — about as long as the width of a human hair.

— Wikipedia on Quantum machine

2011.10.04 Tuesday ACHK

Quantum coherence, 3

Large-scale (macroscopic) quantum coherence leads to novel phenomena. For instance, the laser, superconductivity, and superfluidity are examples of highly coherent quantum systems, whose effects are evident at the macroscopic scale. These examples of quantum coherence are Bose–Einstein condensates. Here, all the particles that make up the condensate are in-phase; they are thus necessarily all described by a single quantum wavefunction.

On the other hand, the Schrodinger’s cat thought experiment, highlights the fact that quantum coherence is not typically seen at the macroscopic scale but has been observed in the motion of a mechanical resonator (see Quantum machine).

— Wikipedia on Quantum coherence

2011.10.02 Sunday ACHK

Bell’s theorem

Quantum coherence

The quantum description of perfectly coherent paths is called a pure state, in which the two paths are combined in a superposition. The correlation between the two particles exceeds what would be predicted for classical correlation alone (see Bell’s inequalities).

— Wikipedia on Quantum coherence

2011.09.30 Friday ACHK

Complementarity

Quantum coherence, 1

Berthold-Georg Englert, Marlan O. Scully & Herbert Walther, Quantum Optical Tests of Complementarity, Nature, Vol 351, pp 111–116 (9 May 1991) and (same authors) The Duality in Matter and Light Scientific American, pg 56–61, (December 1994). Demonstrates that complementarity is enforced, and quantum interference effects destroyed, by decoherence (irreversible object-apparatus correlations), and not, as was previously popularly believed, by Heisenberg’s uncertainty principle itself.

— Wikipedia on Complementarity (physics)

2011.09.28 Wednesday ACHK

Mach principle

The broad notion is that “mass there influences inertia here”.

— Wikipedia on Mach principle

Mach principle states that the inertial mass of an object is due to (the gravitational influences of) other objects.

In other words, the inertial mass of an object is due to the gravitational mass of itself and the gravitational masses of other objects.

— Me@2011.09.24

2011.09.27 Tuesday (c) All rights reserved by ACHK

A purpose of life

“A purpose of life” is to locally decrease the entropy

which is pretty unusual among the natural phenomena.

— Ten new things modern physics has learned about time

— Lubos Motl

2011.09.25 Sunday ACHK

Meta-unification

AdS/CFT correspondence 4

AdS/CFT is a unification of field theory and string theory – a kind of spectacular meta-unification, too.

— Unification as a source of certainty

— Lubos Motl

2011.09.24 Saturday ACHK

Momentum and electric charge

In fact, all the dualities in string theory are obviously examples of unification. The electric charge is unified with the momentum of a particle; this insight was already known to Kaluza or at least Klein. That’s true because the electric charge is the generator of an isometry in a new 5th circular dimension – which is the momentum in this direction.

— Unification as a source of certainty

— Lubos Motl

2011.09.22 Thursday ACHK

Disappointed

My high school teachers in mathematics were excellent. We studied rather advanced topics in mathematics. I had no difficulty with them.

However, I was rather disappointed that my physics teacher was not good enough. The fundamental intuition in physics was not established during my high school year. I regretted it up to now.

— Shing-Tung Yau

2011.09.19 Monday (c) All rights reserved by ACHK

Number, Time, Money, 2.7

Ideal clock 3.7 | 時間定義 13.7

第二,應用時間標籤時,我們並不會真的把它們逐對直接比較。

反而,我們是在各個事件發生時,先行從年曆、月曆、日曆 和 時鐘上,獲取時間讀數,然後把各個事件,放在時間軸上的對應位置。那樣,毋須做任何其他動作,所有你要考慮的事件,就會已經自動排列好。

— Me@2011.09.16

2011.09.16 Friday (c) All rights reserved by ACHK

Make a difference, 2

Verification principle

Verificationism is the view that a statement or question is only legitimate if there is some way to determine whether the statement is true or false, or what the answer to the question is.

Verification principle: That meaningful statements should be analytic, verifiable or falsifiable.

— Wikipedia on Verificationism

檢證原則

一句句子要有意思,你要講得出,至少在原則上,它在什麼情況下為之真、在什麼情況下為之假。換句話說,你要講得出,至少在原則上,如何證明或者否證它。否則,那句句子就沒有意義。

檢證原則 –> 印證原則

但是,有時即使一些句子明明是有意義的,在原則上,也沒有可能百分百證明,它們是正確的。

例如,科學理論句子的特性是,只要有一個妥當執行的實驗,和它的預測不相符,就足以否證它。相反,無論有多少次實驗的結果,和該個科學理論的預測吻合,你也不能保證,下一次的實驗結果,仍然會是那樣。換句話說,無論你做多少次實驗,也不能百分百證明,那句科學理論句子是正確的。

所以,我們放寬了「檢證原則」的要求,把它改編為「印證原則」。一句句子即使不能通過「檢證原則」,如何能夠通過「印證原則」的話,我們仍然可以視之為有意義。

印證原則

一句句子即使不能通過「檢證原則」,如果你可以講得出,至少在原則上,如何提高它的可信度,我們仍然可以視之為有意義。

— Me@2011.09.15

2011.09.15 Thursday (c) All rights reserved by ACHK

Number, Time, Money, 2.6

Ideal clock 3.6 | 時間定義 13.6

(安:第二個大問題是,你剛才講過,沒有一套數字標籤系統(時間讀數)的話,有多於兩件事時,無論是

1. 要建構事件序列;

2. 要在原本的事件序列中,加插額外的另一件事;還是

3. 要把兩個事件序列,組合成一個序列,

都要將眾多對事件,逐對考慮發生的先後次序,十分麻煩。但是,有了一套數字標籤系統後,何嘗不是十分麻煩呢?

例如,我們原本的事件序列是「乙(-1)、甲(0)、丙(2)」。如果要額外加上第四件事「丁(1)」的話,你都要先比較(-1, 1)的大小關係、(0, 1)的大小關係 和 (2, 1)的大小關係,才可以知道「丁(1)」發生於「甲」「丙」之間,繼而更新序列為「乙(-1)、甲(0)、丁(1)、丙(2)」。

到頭來,也是要「逐對比較」。唯一的分別,就是原本是逐對事件比較先後,現在是逐對數字比較大小。)

第一,即使要「逐對比較」,「比較數字」遠比「比較事件」容易得多。我給任意的兩個數字你,你都會立刻知道,哪一個比較大。但是,某兩件事件的先後關係,有時十分明顯,有時不十分明顯,有時十分不明顯。

「十分明顯」的例子有:「甲 = 入大學;乙 = 大學畢業」。因為「入大學」是「大學畢業」的先決條件,所以「入大學」一定先於「大學畢業」發生。

「不十分明顯」的例子有:「甲 = 電燈面世;乙 = 電話面世」。

「十分不明顯」的例子有:「甲 = 地球形成;乙 = 火星形成」。

即使是「先後次序十分明顯的一堆事件」,「比較數字」仍然比「比較事件」容易得多。試想想,你怎樣「解釋」給電腦知,「入大學」是「大學畢業」的先決條件呢?

相反,如果「甲」和「乙」都有數字標籤的話,例如「甲 = 入大學(1999 年);乙 = 大學畢業(2002 年)」,毋須任何其他的解釋,電腦也會立刻知道,「甲」「乙」的先後次序。

即使有一百萬件事件要排序,如果當中的每一件事,都有時間標籤的話,電腦也可以輕易完成。相反,如果是一堆推理任務的話,一般的電腦不能勝任。

第二,應用時間標籤時,我們並不會真的把它們逐對直接比較。

— Me@2011.09.14

2011.09.14 Wednesday (c) All rights reserved by ACHK

Number, Time, Money, 2.5

Ideal clock 3.5 | 時間定義 13.5

(安:有一個大問題。你如何選定某一件事所對應的「時間讀數」呢?

例如,如果「乙」先於「甲」發生的話,「乙」的數字應該比「甲」的數字小。但是,有無限組數字符合這個條件。)

第一件事(甲)的數字,正如剛才所講,是任意的。所以,你可以選一個對你來說,最方便的數字。因為 0(零)是最簡單的數字,大多數情況下,也是最方便的數字。

第二件事(乙)的數字,除了「如果『乙』先於『甲』發生的話,『乙』的數字應該比『甲』的數字小;如果『乙』後於『甲』發生的話,『乙』的數字應該比『甲』的數字大」這個條件要符合之外,其實都是任意的。

類似地,其他事件的數字標籤,有很大程度上也是任意的。只要數字們的大小關係,正確反映事件們的先後次序便行。

正正是因為有很大的主觀任意性,大家才需要為那些數字標籤定下客觀標準。客觀標準化後,反映事件們發生先後次序的數字標籤,就可以簡稱為「時間讀數」。

至於如何把那些數字標籤客觀標準化,則是另一個問題。

— Me@2011.09.14

2011.09.14 Wednesday (c) All rights reserved by ACHK

時、間、時間

Number, Time, Money, 2.4

Ideal clock 3.4 | 時間定義 13.4

這段改編自 2010 年 3 月 6 日的對話。

更麻煩的情況是,當你要把另一個序列「戊、己、庚、辛、壬、癸」,和原本的序列「乙、甲、丁、丙」合成一個序列時,你將要花很多功夫,比較多對事件的發生先後。

(安:你究竟想帶出什麼?)

要解決這類問題,就必須訂立一套客觀的標準。這套客觀標準,就是「因果距離」。

這套標準的中心思想是,把每一件事都標籤一個數字。在以下的討論中,我們假設事件甲乙丙丁的發生先後次序是「乙、甲、丁、丙」。

首先,將第一件要考慮的事件(甲),附上一個任意的數字。例如,為了方便起見,我們可以將「甲」的數字定為「0」(零)。

然後,我們考慮第二件事(乙),看看它發生於「甲」的之前還是之後。之前的話,我們就用一個小於「甲」數字的數字來標籤「乙」,例如 -1; 之後的話,我們就用一個大於「甲」數字的數字,例如 +1。在我們的例子中,「乙」發生於「甲」之前。「乙」的數字是 -1。

接著,我們考慮第三件事(丙),根據它分別和「甲」「乙」的先後次序,來決定用哪一個數字來標籤「丙」。如果「丙」發生於「乙」「甲」之間的話,我們就用一個 -1(乙)和 0(甲)之間的數字來標籤「丙」,例如 -0.5。在我們的例子中,「丙」發生於「甲」之後。我們需要用一個大於 0(甲)的數字來標籤「丙」,例如 2。

如此類推,把我們需要考慮的每一件事,都用這個方法,附上一個數字標籤,用來反映它們的發生先後次序。數字越小,代表越先發生;數字越大,代表越後發生。

把每一件事都標籤一個數字,事件發生的先後就一目瞭然,避開了剛才所提的兩個問題。

例如,我們原本的事件序列是「乙(-1)、甲(0)、丙(2)」。如果要額外加上第四件事「丁(1)」的話,只要看看「丁」的數字(1),我們就立刻知道,它發生於「甲」「丙」之間,從而馬上更新序列為「乙(-1)、甲(0)、丁(1)、丙(2)」。

另外,如果要把這個序列和另一個序列「戊(-0.9)、己(1.1)、庚(1.5)、辛(1.51)、壬(4)、癸(17)」,組合成一個大序列的話,我們只要把這十件事,根據它們的數字標籤排序就可以。

這裡的數字標籤,就是平日所用的「時間讀數」。兩件事的時間讀數相差,就是平日所謂的「時間長度」。而時間長度,就是我所講的「因果距離」。「時間讀數」和「時間長度」,把「先後」這個概念客觀標準化。

「時間讀數」,可以簡稱為「時」;「時間長度」,可以簡稱為「間」。

(安:有一個大問題。你如何選定某一件事所對應的「時間讀數」呢?

例如,如果「乙」先於「甲」發生的話,「乙」的數字應該比「甲」的數字小。但是,有無限組數字符合這個條件。)

— Me@2011.09.13

2011.09.13 Tuesday (c) All rights reserved by ACHK

時間金錢

Number, Time, Money, 2.3

Ideal clock 3.3 | 時間定義 13.3

這段改編自 2010 年 3 月 6 日的對話。

(安:那你又如何描述或者定義「因果距離」呢?)

如果世間上只有兩件事的話,其實我們毋須考慮「因果距離」。例如,事件乙的原因是事件甲,所以甲「先於」乙發生。我們考慮甲乙的先後便行。考慮它們的「因果距離」,並沒有大意義。

比喻來說,假設你生存在「以物易物」的年代,而世界上只有兩件東西(A 和 B)在經濟市場。你擁有物件 A ,正在猶豫用不用它來換取物件 B。你只需要考慮,究竟對你來說,物件 B 的價值,是否高於物件 A。考慮它們的價值相差多少,並沒有大意義。

要考慮「因果距離」,是因為有第三件事「丙」。有甲乙丙三件事的話,就會有三對先後關係要講(甲乙、乙丙 和 甲丙),十分麻煩。如果我們知道「甲」發生於「乙」之前,而「乙」又發生於「丙」之前的話,我們就自然知道「甲」在「丙」之前。但是,如果我們所知道的是,「甲」發生於在「丙」之前,和「乙」發生於「丙」之前的話,我們其實還未知道,甲乙兩件事,哪件先發生。

比喻來說,要考慮物件 A 和物件 B 的價值具體相差多少,是因為有第三樣物件 C。如果我們所知道的是,A 的價值高於 C,和 B 的價值高於 C 的話,我們其實還未知道, A B 兩樣物件,哪一樣的價值比較高。

(安:那有什麼麻煩呢?你只要把甲乙丙的發生先後,順序講一次便行,例如:「這三件事的時序是『乙、甲、丙』。」)

這個序列不會是事先知道的。那要我們個別考慮「甲乙」、「乙丙」和「甲丙」的先後次序才會知道。比喻來說,在「以物易物」的年代,你不會事先知道 A、B、C 的價值序列是(例如)「B、A、C」。我們要個別比較「AB」、「BC」和「AC」的價值高低才會知道。

還有,如果還有第四件事「丁」的話,你就要修改你的序列。

(安:那應該不成困難。只要把「丁」加在原本的序列就可以,例如「乙、甲、丁、丙」。)

那又返回同樣的問題:「丁」應該加插於哪兩件事之間,我們不會事先知道。我們要將「丁」和原本的事件逐一考慮先後次序,直到有一件事先於「丁」(例如「甲」),和有另一件事後於「丁」(例如丙),才可以知道這四件事的發生先後是「乙、甲、丁、丙」。

更麻煩的情況是,當你要把另一個序列「戊、己、庚、辛、壬、癸」,和原本的序列「乙、甲、丁、丙」合成一個序列時,你將要花很多功夫,比較多對事件的發生先後。

(安:你究竟想帶出什麼?)

要解決這類問題,就必須訂立一套客觀的標準。這套客觀標準,就是「因果距離」。

— Me@2011.09.12

2011.09.12 Monday (c) All rights reserved by ACHK