大地之韻律 2

曲: Mathematics

詞: Physics

Maths ~ Physics

Maths is the language; physics is the content.

— Me@2009.01.16

— Me@2008.10.20

2014.01.16 Thursday (c) All rights reserved by ACHK

測不準原理 1.6

這段改編自 2010 年 4 月 10 日的對話。

那樣,如果該物理系統,並不處於 A、B、C 狀態,即是不處於任何一個,「能量本徵態」的話,情況又會如何呢?

系統就會處於一個「非本徵態」,又稱「疊加狀態」。「疊加狀態」的意思是,「本徵態的疊加」。例如,系統可能處於

\sqrt{\frac{1}{3}} | A \rangle + \sqrt{\frac{2}{3}} | B \rangle

的一個狀態。

那樣,你在量度之前,並不會知道,你得到的能量數值是 1J (「本徵態 A」的對應數值),還是 3J (「本徵態 B」的對應數值)。但是,你會知道,你有 1/3 的機會率,會得到 1J; 而亦有 2/3 的機會率,會得到 3J。

換句話說,如果將該物理系統複製成,120 萬個相同系統,然後量度它們各自的能量數值的話,你會發現,將有大概 1/3 的成員,即是 40 萬個,帶有 1J 的能量;另外有大概 2/3 的成員,即是 80 萬個,帶有 3J 的能量。

因為現在不只有一點數據,而是有一大堆的數據,所以我們可以討論,這堆數據的「標準差」(standard deviation)。「標準差」是一個統計學的測量,用來反映一堆數據的分散程度。「標準差」越大,就代表一堆數據越分散;「標準差」越小,就代表一堆數據越集中。

例如,在剛才的例子中,總共有 120 萬個能量數值。當中大概 40 萬個是 1J; 而大概 80 萬個是 3J。如果要找到這堆數據的「標準差」,你就要先運算出它們的「平均值」:

\frac{400000(1J) + 800000(3J)}{1200000}

= 2.333J

有了這個「平均值」後,我們就可以找到「標準差」:

\sqrt{\frac{400000(1-2.333)^2 + 800000(3-2.333)^2}{1200000}}

= 0.9428J

那樣,我們就可以說:

處於

\sqrt{\frac{1}{3}} | A \rangle + \sqrt{\frac{2}{3}} | B \rangle

這個『能量疊加狀態』的一個物理系統,如果複製成很多個相同的系統,然後各自量度能量數值的話,那堆能量數據的分佈,所對應的『標準差』,將等於 0.9428J。  

因為這個論述十分費時,所以我們會將它簡化成:

\sqrt{\frac{1}{3}} | A \rangle + \sqrt{\frac{2}{3}} | B \rangle

的『標準差』是 0.9428J。

— Me@2014.01.14

2014.01.14 Tuesday (c) All rights reserved by ACHK

First versus Second Order Logic

Conclusion

So, which logic is superior? It depends to some extent on what we need it for. Anything provable in first order logic can be proved in second order logic, so if we have a choice of proofs, picking the first order one is the better option. First order logic has more pleasing internal properties, such as the completeness theorem, and one can preserve this in second order via Henkin semantics without losing the ability to formally express certain properties. Finally, one needs to make use of set theory and semantics to define full second order logic, while first order logic (and Henkin semantics) get away with pure syntax.

On the other hand, first order logic is completely incapable of controlling its infinite models, as they multiply, uncountable and generally incomprehensible. If rather that looking at the logic internally, we have a particular model in mind, we have to use second order logic for that. If we’d prefer not to use infinitely many axioms to express a simple idea, second-order logic is for us. And if we really want to properly express ideas like “every set has a least element”, “every analytic function is uniquely defined by its power series” – and not just express them, but have them mean what we want them to mean – then full second order logic is essential.

— Completeness, incompleteness, and what it all means: first versus second order logic

— Stuart Armstrong

2014.01.11 Saturday ACHK

Past Tense vs Present Perfect Tense

這段改編自 2013 年 12 月 18 日的對話。

1. Past Tense 是講現在之前,已知的一點時間,例如:

He ate his breakfast at 8am.

2. Present Perfect Tense 是講 Present 之前的一段時間。至於是現在之前的哪一刻,則沒有提及:

He has eaten his breakfast.

3. Past Perfect Tense 是講 Past 之中,某一點已知的時間,再之前的一段時間。至於是該點時間之前的哪一刻,則沒有提及:

At 9am, he told me that he had already eaten his breakfast.

Tell 用 past tense “told”,因為你知道他在 9am 時跟你說。

而 eat 則用 past perfect tense “had eaten”,因為他沒有告訴你,他在 9am 之前的哪一刻吃早餐。

— Me@2013-12-18 01:52 AM

2014.01.10 Friday (c) All rights reserved by ACHK

Monoid

A monoid is a set with an associative binary operation that has an identity element. By the same technique as for groups, any monoid “is” a category with exactly one object and any category with exactly one object “is” a monoid.

— Wikibooks on Category Theory/Categories

2014.01.08 Wednesday ACHK

測不準原理 1.5

這段改編自 2010 年 4 月 10 日的對話。

一個物理系統,是否正處於「本徵態」,要視乎相對於,哪一個物理量而言。一個物理系統,正處於物理量「甲」的「本徵態」,並不代表它正處於,另一個物理量「乙」的「本徵態」。換句話說,「甲的本徵態」,不一定是「乙的本徵態」。例如,「位置的本徵態」,不一定是「能量的本徵態」。

如果一個物理系統的狀態,有可能同時是物理量「甲」和物理量「乙」的 eigenstate(本徵態),「甲」和「乙」就為之 compatible observables(相容觀察量)。不可能的話,「甲」和「乙」就為之「不相容觀察量」。

你首先記住這一點。然後,我要跳去另一個問題 —— 如果一個物理系統,並不是處於(例如)能量的本徵態,我們會量度到什麼能量數值呢?

其實,你都會度到其中一個本徵態,所對應的數值,簡稱 eigenvalues(本徵值/特徵值)。

(安:什麼意思?

你的講法好像自相矛盾。不在「本徵態」,但又度到「本徵值」?)

無論一個物理系統,是否處於「能量本徵態」,你將會量度到的能量數值,都一定會是「能量本徵值」。

處於「能量本徵態」與否,具體的分別在於,如果系統是處於「能量本徵態」,你在量度之前,就可以知道,你會得到哪一個「能量本徵值」;但是,如果不是處於「能量本徵態」,你在量度之前,並不可能知道,你會得到哪一個「能量本徵值」。你可以知道的,就只是各個可能的「能量本徵值」,對應的出現機會率。

例如,假設一個物理系統,有「能量本徵態」 A、B 和 C,而順序對應的「能量本徵值」是 1J、3J 和 5J。

如果該物理系統正處於「本徵態 A」,你就一定會量度到能量數值 1J。換句話說,只要知道系統正處於「本徵態 A」,即使不用量度,你也知道系統當時,所帶的能量值是 1 焦耳。同理,如果該物理系統正處於「本徵態 B」,你就一定會量度到能量數值 3J;如果該物理系統正處於「本徵態 C」,你則一定會量度到能量數值 5J。

那樣,如果該物理系統,並不處於 A、B、C 狀態,即是不處於任何一個,「能量本徵態」的話,情況又會如何呢?

系統就會處於一個「非本徵態」,又稱「疊加狀態」。「疊加狀態」的意思是,「本徵態的疊加」。例如,系統可能處於

\sqrt{\frac{1}{3}} | A \rangle + \sqrt{\frac{2}{3}} | B \rangle

的一個狀態。

那樣,你在量度之前,並不會知道,你得到的能量數值是 1J(「本徵態 A」的對應數值),還是 3J(「本徵態 B」的對應數值)。但是,你會知道,你有 1/3 的機會率會得到 1J,有 2/3 的機會率會得到 3J。

— Me@2014.01.07

2014.01.07 Tuesday (c) All rights reserved by ACHK

V 和 U 的分別

Electric Potential and Electric Potential Energy

請問 Electric Potential and Electric Potential Energy 有咩分別?怎樣分辨?

~~~~~~~~~~

簡單而言,

electric potential = electric potential energy per unit charge

V=\frac{U}{Q}

~~~~~~~~~~

詳細來說,電勢能 electric potential energy (U) 是一個 system(系統)的性質,而電勢 electric potential(V) 則是空間上某一點的性質。

例如,如果有 Q_1 和 Q_2 兩粒 charges(電荷),距離是 r 的話,這兩粒 charges 所組成的 system 就有 electric potential energy:

\frac{1}{4 \pi \epsilon_0} \frac{Q_1 Q_2}{r}

由於 U 是這個 system 的性質,你並不可以問:「那樣,那些 potential energy 儲存在哪裡呢?」;因為 U 根本不是,儲存於空間上任何一點。我最多只能答,那些 electric potential energy 儲存在那個 system 之中。比喻說,你的老師讚你「聰明」。你並不可以問:「那樣,究竟我的智力,儲存在腦中的那一點?」

如果只有一粒 point charge(電荷)Q,就沒有 potential energy 可言,因為根本沒有一個 system 。但它會令到周圍形成一個 potential (V)。至於那個 potential 的數值是多少,則沒有答案,除非你指明,你是想問空間上的哪一點。

如果你想問的那一點,和 Q 位置的距離是 r,那一點(由於 Q 所做成的)potential 就是:

\frac{1}{4 \pi \epsilon_0} \frac{Q}{r}

記住,electric potential energy (U) 是一個 system 的性質;而 electric potential (V) 則是空間上某一點的性質,不同點有不同的數值,即使對於同一粒 Q 而言。

— Me@2014.01.04

2014.01.05 Sunday (c) All rights reserved by ACHK