機會率驗算 1.2

這段改編自 2013 年 12 月 16 日的對話。

(問:在運算機會率題目時,怎樣可以知道,自己的思路有沒有錯呢?)

一方面,你盡量在每一題的機會率題目,也同時使用「P 方法」和「S 方法」,互作驗算。

另一方面,在用「P 方法」時,如果面對的是稍為複雜的題目,你要重點留意的,是畫好 Tree Diagram(樹形圖)。Tree Diagram 雖然是最原始,但同時亦是最有效的,機會率思考工具。

— Me@2013.12.24

2013.12.24 Tuesday (c) All rights reserved by ACHK

機會率驗算 1.1

這段改編自 2013 年 12 月 16 日的對話。

有一個箱子,內裡有三顆骰子。三顆之中,只有一顆是「公平骰子」,有 1、2、3、4、5、6 六面。另外的兩顆,每一顆有 0、0、1、1、2、2 六面。假設對於三顆骰子中的每一顆而言,每一面出現的機會率都是六分之一。那樣,如果從那箱子中,隨機抽兩顆出來,然後再擲的話,擲到兩顆都是 2 的機會率是多少?

做機會率題目的主要難處是,好像沒有步驟可言,導致很難檢驗,自己的思考有沒有漏洞。所以,做機會率的題目時,一定要驗算。而驗算的方法就是,用兩個完全不同的方法去做。如果它們都得出同樣的答案,錯的機會就很微。對於機會率題目而言,建議同時使用「P 方法」和「S 方法」,互作校對。

「P 方法」的意思是 Probability(機會率)方法,即是將幾個 probability 分數乘在一起,從而得到最終的機會率分數。

「S 方法」的意思是 Statistics(統計學)方法,即是透過 counting(點數)去運算;由此至終,只寫一個分數 —— 將所有可能性放在分數,然後再將你想要的可能性,放在分子。

以這題為例:

~~~

P 方法:

透過 Tree Diagram(樹形圖),可以得出:

P(三顆骰抽兩顆,然後兩顆都擲到 2)

= (1/3)(1/6)(1)(1/3) + (2/3)(1/3)[(1/2)(1/6) + (1/2)(1/3)]

= …

= 2/27

~~~

S 方法:

一個大分數

= (分子)/(分母)

= 想要的可能性/所有的可能性

所有的可能性 = 三顆骰子選兩顆 x 每顆有六面 = (3C2)(6)(6) = 108

(「3C2」即是「3 選 2」;「3 選 2」有 3 個可能性。

想要的可能性 = 二粒都是 2

= 1×2 (抽到一顆骰子正常,一顆不正常)+ 1×2(抽到一顆正常,和抽到另一顆的不正常骰子)+ 2×2(兩顆骰子也不正常)

= 8

所以,

P(三顆骰抽兩顆,然後兩顆都擲到 2)

= 8/108

= 2/27

「S 方法」所得出的答案

= 2/27

= 「P 方法」所得出的答案

所以,這題機會率的運算,錯的機會就很微。

— Me@2013.12.20

2013.12.21 Saturday (c) All rights reserved by ACHK

機會率一樣

這段改編自 2010 年 7 月 20 日的對話。

運算機會率題目時,盡量不要用「一樣」這個字眼;盡量不要說「因為兩個情況一樣,所以你要將中途答案乘二」這類說話。

例如,問題是:

如果擲兩個錢幣,擲到一公一字(1H1T)的機會率是多少?

假設每一個錢幣都是正常的,即是擲到公字的機會均等,也是 1/2。

這題很簡單容易,所以用最原始的方法也無妨:

HH
HT
TH
TT

總共有 4 個可能的結果。根據題目的假設,它們每個的發生機會均等,都是 1/4;而中間的兩個可能,都是題目想要的結果,所以,答案是 2/4,即是 1/2。

在解釋這一點時,如果要用「一樣」這個詞語,我可以用兩個完全相反的講法。換而言之,「一樣」會造成混淆。

HH
HT <
TH <
TT

我既可以說,因為中間的兩個案例「一樣」 —— 都是「一公一字」 —— 符合題目的要求,所以兩個案例都要,導致分子是 2,答案是四分之二:

2
_

4

但是,我又可以說,因為中間的兩個案例「不一樣」 —— 一個是「第一個公、第二個字」,而另一個是「第一個字、第二個公」 —— 所以應該視為兩個案例,而不是 1 個。那樣,分子就應該是 2,而不是 1。答案是四分之二:

2
_

4

化簡後是 1/2。

— Me@2013.07.27

2013.07.27 Saturday (c) All rights reserved by ACHK

Multinomial coefficient 3

二項式係數 5 | Binomial coefficient 5

這段改編自 2010 年 7 月 20 日的對話。

外傳故事:

利用 multinomial coefficient(分組公式)時,有一個情況要額外小心。我們先研究一題例子:

如果有 10 個人,要分成兩隊音樂組合,各自有 5 人,那總共有多少個可能?

答案表面上是 10_C_5,即是「10 選 5」,因為,你要考慮由那 10 人之中,選 5 人出來組成第一組樂隊,有多少個方法。

10_C_5 =

(10!)
——–
(5!)(5!)

而我亦多次提過,這題式又可以視為「多項式係數」(multinomial coefficient),意思是「分組公式」 —— 分子是指把 10 人分成兩組;分母則是指,第一組有 5 個人 和 第二組有 5 個人。

但是,實際上,正確的運算方法,應該是

(1/2) 10_C_5 =

1(10!)
——–
2(5!)(5!)

原因是,題目只要求把那 10 人分成,兩組人數相同的樂隊,而題目並沒有要求區分,哪組為之「第一組」、哪組為之「第二組」。例如,

由『ABCDEFGHIJ』10 人中,選了『ACEGI』5 人出來,先組成一隊

由『ABCDEFGHIJ』10 人中,選了『BDFHJ』5 人出來,先組成一隊

」,

在這一題上文下理的要求下,應該歸納為同一個「case」(事件可能性),因為,兩者的結果都同樣是:

『ACEGI』為之一隊,而『BDFHJ』則為之另一隊。

如果題目改為:

如果有 10 個人,要抽 5 人出來,組成一隊音樂組合,那總共有多少個可能?

答案則是:

10_C_5 =

(10!)
——–
(5!)(5!)

如果題目改為:

如果有 10 個人,要分成兩隊音樂組合,第一組有 5 人,而第二組又有 5 人,那總共有多少個可能?

答案都是:

10_C_5 =

(10!)
——–
(5!)(5!)

明白的話,試一試這題:

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 5 人,而第二輛的載客量是 5 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

究竟答案應該是 (1/2) 10_C_5,還是 10_C_5 呢?

— Me@2013.07.19

2013.07.20 Saturday (c) All rights reserved by ACHK

Multinomial coefficient 2.6

二項式係數 4.6 | Binomial coefficient 4.6

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

你講得沒有錯,即使在那 10 人中,指定某 4 個人去乘第一輛車,那就已經有(4!)個可能性,即是 24 個那 4 人被抽出來時,可能的先後次序。

而正正是因為那樣,再加上那(4!)個可能性,在題目問法的上文下理之下,被定義為「同一個」case(事件可能性),所以分母才會有一個(4!)的因子,用以減低「事件可能性」的數目。

換而言之,題目只在乎「分配方法」,即是那 10 人之中,哪些人上第一輛車,哪些人去第二輛。

試想想,假設你只懂乘除,而不懂得任何機會率,或者統計學的公式,你會怎樣完成這一題呢?

首先,總共有 10 個坐位,第一輛車有 4 個,而第二輛車有 6 個:

(_)(_)(_)(_)|(_)(_)(_)(_)(_)(_)

抽第一個人去第一輛車時,有 10 個可能的人:

(10)(_)(_)(_)|(_)(_)(_)(_)(_)(_)

抽第二個人去第一輛車時,有 9 個可能性:

(10)(9)(_)(_)|(_)(_)(_)(_)(_)(_)

如此類推:

(10)(9)(8)(7)|(_)(_)(_)(_)(_)(_)

但是,那 4 人也是乘坐第一輛車,題目不想理會他們,被抽出來時的先後次序。而他們「被抽的次序」,總共有 24 個。所以,分母應該要有一個 24 的因子:

24 = 4 x 3 x 2 x 1

(10)(9)(8)(7)|(_)(_)(_)(_)(_)(_)
————————————————————-
(4)(3)(2)(1)|(_)(_)(_)(_)(_)(_)

然後,我們考慮第二輛車。因為餘下的有 6 個人,抽第一個人去第二輛車時,就有 6 個可能的人:

(10)(9)(8)(7)|(6)(_)(_)(_)(_)(_)
————————————————————-
(4)(3)(2)(1)|(_)(_)(_)(_)(_)(_)

抽第二個人去第二輛車時,有 5 人可能性:

(10)(9)(8)(7)|(6)(5)(_)(_)(_)(_)
————————————————————-
(4)(3)(2)(1)|(_)(_)(_)(_)(_)(_)

如此類推:

(10)(9)(8)(7)|(6)(5)(4)(3)(2)(1)
————————————————————-
(4)(3)(2)(1)|(_)(_)(_)(_)(_)(_)

但是,那 6 人也是去乘坐第二輛車。題目不想理會他們,被抽出來時的先後次序。而他們「被抽的次序」,總共就有 720 個。所以,分母還有一個, 720 的因子:

720 = 6 x 5 x 4 x 3 x 2 x 1

(10)(9)(8)(7)|(6)(5)(4)(3)(2)(1)
———————————————————
 (4)(3)(2)(1)|(6)(5)(4)(3)(2)(1)

= 210

在連 factorial(階乘)都不懂的情況下,你就需要用到這個詳細的做法。如果你懂 factorial,即使假設還未學會 n_C_r,你仍然可以用一個,精簡一點的做法:

首先,有 10 個人 10 個位,所以總共有(10!)個排法:

(10!)
——–
(_)(_)

但是,第一輛車的那 4 人,內在次序不重要,所以,你要把那(4!)個排法「歸一」:

(10!)
——–
(4!)(_)

同理,第二輛車的那 6 人,內在次序亦不重要,所以分母再有一個(6!)的因子:

(10!)
——–
(4!)(6!)

= 210

— Me@2013.07.15

2013.07.15 Monday (c) All rights reserved by ACHK

Multinomial coefficient 2.5

二項式係數 4.5 | Binomial coefficient 4.5

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

言歸正傳,剛才我講過:

記住,是否視之為「一個」可能性,並不是跟你的感覺行事。一切要按題目的指示去定義。例如,在這一題中,題目問的是「分法」,而不是「抽法」,或者「坐法」。

所以,答案明顯是 10_C_4,即是「10 選 4」,等於 210。結論是,總共有 210 個可能的分配方法。

10_C_4 =

(10!)
——–
(4!)(6!)

而我亦提過,這題式又可以視為「多項式係數」(multinomial coefficient),意思是「分組公式」—— 分子是指把 10 人分成兩組;分母則是指,第一組有 4 個人 和 第二組有 6 個人。因為是「分組」,即是「分成組合」,所以每組內部的次序並不重要。

但是,你剛才又追問:

但是,我覺得應該不止有 210 個可能性,因為抽某 4 個人出來時,本身有很多個抽法。假設「甲、乙、丙、丁」四人被抽中,去乘坐第一輛車,「先抽甲出來」和「先抽乙出來」,就已經是兩個不同的可能性。我不太明白,為什麼毋須考慮這一點?

那樣,我就會答:

你講得沒有錯,即使在那 10 人中,指定某 4 個人去乘第一輛車,那就已經有(4!)個可能性,即是 24 個那 4 人被抽出來時,可能的先後次序。

而正正是因為那樣,再加上那(4!)個可能性,在題目問法的上文下理之下,被定義為「同一個」case(事件可能性),所以分母才會有一個(4!)的因子,用以減低「事件可能性」的數目。

換而言之,題目只在乎「分配方法」,即是那 10 人之中,哪些人上第一輛車,哪些人去第二輛。

試想想,假設你只懂乘除,而不懂得任何機會率或者統計學的公式,你會怎樣完成這一題呢?

— Me@2013.07.12

2013.07.12 Friday (c) All rights reserved by ACHK

Multinomial coefficient 2.4

二項式係數 4.4 | Binomial coefficient 4.4

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

換而言之,從 10 人中抽 4 人出來,組成第一隊樂隊,總共有多少個抽法呢?

在這個情況下,次序很明顯不重要。試想想,假設你從那 10 人中,抽了「ABCE」4 人出來。無論抽的先後次序是「ABCE」,還是「ACBE」,他們所組成樂隊都會「一樣」。兩個情況所組成的音樂組合,你都會視之為「同一隊」樂隊。

但是,如果問題改為:

從 10 人中抽 4 人出來,去參加一個音樂比賽,而沒有其他參賽者的話,總共有多少個可能的比賽排名結果呢?

那樣,被抽了出來的那 4 個人中,不同的人拿冠軍,為之不同的排名,不同的結果。所以,次序需要考慮。運算方面,詳細的版本是:

首先,考慮有「冠、亞、季、殿」軍 4 個空格:

(_)(_)(_)(_)

因為冠軍寶座有 10 個可能的奪得者,所以,第一格是 10:

(10)(_)(_)(_)

其中 1 人奪得冠軍後,亞軍還有 9 個可能的領獎人士:

(10)(9)(_)(_)

如此類推的話,我們就可以推斷到,總共有 5040 個可能的比賽結果:

(10)(9)(8)(7)

= 5040

精簡的版本則是:

題目明確地問,有多少個可能的比賽排名。所以,題目所問的,就相當於:

從 10 人中抽 4 人出來,而次序重要的話,總共有多少個抽法呢?

那是 permutation(排列)。答案明顯是 10_P_4,即是「10 排 4」,等於 5040。

10_P_4 =

10!
——-
(10-4)!

結論是,總共有 5040 個可能的比賽排名。

— Me@2013.07.08

2013.07.08 Monday (c) All rights reserved by ACHK

Multinomial coefficient 2.3

二項式係數 4.3 | Binomial coefficient 4.3

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

(CYW:用你這個講法,我好像明白多了一點。但是,如果沿用我剛才的問法,我又確實感覺到,應該考慮「抽哪 4 個人去第一輛車」的不同次序。我暫時還未有信心,可以在考試時準確分辨,哪些時候需要考慮「次序」,哪些時候不需要。)

那就代表了,你仍然不太明白我的解答。或者,你先搞清楚,combination(組合)和 permutation(排列)的分別。

運算方面,毋須考慮次序的,就為之「組合」,公式是「nCr」;必須考慮次序的,就為之「排列」,公式是「nPr」。

而真正困難的,是在運算之前,要準確分辨,需要考慮次序,還是不需要。你只要利用正常的智力,一般的常識,再加上「組合」和「排列」這兩個詞語的輔助,就可以清晰劃分。

意思是,凡是題目明示或者暗示,尋找「組合」數目的,就毋須考慮,各個組合內部的次序,因為那是「組合」這個詞語的意思。例如,假設那 10 人是「ABCDE FGHIJ」,要分成兩隊「音樂組合」,簡稱「樂隊」。如果第一隊有 4 人,第二隊有 6 人,總共有多少個分配隊員方法?

換而言之,從 10 人中抽 4 人出來,組成第一隊樂隊,總共有多少個抽法呢?

在這個情況下,次序很明顯不重要。試想想,假設你從那 10 人中,抽了「ABCE」4 人出來。無論抽的先後次序是「ABCE」,還是「ACBE」,他們所組成樂隊都會「一樣」。兩個情況所組成的音樂組合,你都會視為「同一隊」樂隊。

— Me@2013.07.04

2013.07.04 Thursday (c) All rights reserved by ACHK

Multinomial coefficient 2.2

二項式係數 4.2 | Binomial coefficient 4.2

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

答案明顯是 10C4,即是「10 選 4」,等於 210。結論是,總共有 210 個可能的分配方法。

結論同樣是,如果第一輛車載 4 名乘客,而第二輛車載 6 名,總共就有 210 個,可能的分配乘客方法。

(CYW:但是,我覺得應該不止有 210 個可能性,因為抽某 4 個人出來時,本身有很多個抽法。假設「甲、乙、丙、丁」四人被抽中,去乘坐第一輛車,「先抽甲出來」和「先抽乙出來」,就已經是兩個不同的可能性。我不太明白,為什麼毋須考慮這一點?)

因為題目並沒有問這一點;那並不是題目所問的問題。那是答非所問也。如果我把你的問題轉一轉化,那就會清晰一些:

但是,我覺得應該不止有 210 個可能性,因為抽某 4 個人出來後,例如「甲、乙、兩、丁」四人,他們去乘坐第一輛車時,將會有很多種編配座位的方法。所以,我覺得「甲、乙、兩、丁」並不應視為「一個」可能性。

記住,是否視之為「一個」可能性,並不是跟你的感覺行事。一切要按題目的指示去定義。例如,在這一題中,題目問的是「分法」,而不是「抽法」,或者「坐法」。

題目重視的是,10 人之中,分配 4 人去乘第一輛車,有多少個方法。題目並不介意,某 4 人被抽出來時的先後次序,或者在上第一輛車時,有多少個選位方法。

(CYW:用你這個講法,我好像明白多了一點。但是,如果沿用我剛才的問法,我又確實感覺到,應該考慮「抽哪 4 個人去第一輛車」的不同次序。我暫時還未有信心,可以在考試時準確分辨,哪些時候需要考慮「次序」,哪些時候不需要。)

— Me@2013.07.01

2013.07.02 Tuesday (c) All rights reserved by ACHK

Multinomial coefficient 2.1

二項式係數 4.1 | Binomial coefficient 4.1

這段改編自 2010 年 7 月 20 日的對話。

假設有 10 個友人,要乘坐計程車去郊遊。總共有兩輛計程車。第一輛車的載客量是 4 人,而第二輛的載客量是 6 人。換而言之,那 10 人要分成兩組乘車。那樣,總共有多少個分配方法呢?

你只要用二項式係數(binomial coefficient),就可以立刻知道答案。題目所問的,就相當於

如果要從那 10 人之中,抽 4 個出來(去乘坐第一輛車),總共有多少種抽法?

答案明顯是 10_C_4,即是「10 選 4」,等於 210。結論是,總共有 210 個可能的分配方法。

10_C_4 =

(10!)
——–
(4!)(6!)

另一個看法是,你直接把這題看成「分組問題」,用「多項式係數」(multinomial coefficient)去運算。

總共有 10 個人,所以分子是 (10!):

(10!)
——–
(__)

總共有兩組,所以分母有兩個因子:

(10!)
——–
(_)(_)

第一組有 4 個人,所以第一個因子是 (4!):

(10!)
——–
(4!)(_)

第二組有 6 個人,所以第二個因子是 (6!):

(10!)
——–
(4!)(6!)

結論同樣是,如果第一輛車載 4 名乘客,而第二輛車載 6 名,總共就有 210 個,可能的分配乘客方法。

(CYW:但是,我覺得應該不止有 210 個可能性,因為抽某 4 個人出來時,本身有很多個抽法。假設「甲、乙、丙、丁」四人被抽中,去乘坐第一輛車,「先抽甲出來」和「先抽乙出來」,就已經是兩個不同的可能性。我不太明白,為什麼毋須考慮這一點?)

— Me@2013.06.29

2013.06.29 Saturday (c) All rights reserved by ACHK

考慮次序與否 2.2

這段改編自 2010 年 6 月 15 日的對話。

有一個袋子,內裡有十張卡紙。每張卡紙上,都寫上了一個英文字母。那十個字母分別是「AAABBBCCCC」,即是三個 A、三個 B 和 四個 C。你將要抽其中三個字母出來。被抽出來的卡紙,不會放回袋中。

假設整個過程是隨機的,即是各個可能性的機會均等。問題是,你抽中「兩 A 一 B」的機會率是多少?

P 方法:

S 方法:

我們先考慮所有可能結果的總數,放於分母;然後,再考慮可以接受的結果有多少,放於分子。

(_)
(   )

總共有 10 字母,選 3 個出來,所以共有 10_C_3 個可能。(10_C_3)即是 「10 選 3」,等於 120。

(____)
(10_C_3)

而眾多可能的結果中,我們接受的,是「兩 A 一 B」的情況。換句話說,即是要從三個 A 中,選兩個出來;從三個 B 中,選一個出來;和從四個 C 中,選零個出來。

(3_C_2)(3_C_1)(4_C_0)
____________
          (10_C_3)

   (3)(3)(1)
= _____
      (120)

結論是,抽到三個 A 的機會率是 3/40。

(3)(3)(1)
_____
   (120)

= 3/40

答案和 P 方法的結果相同,即是正確的機會很大。

— Me@2013.01.27

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.27 Sunday (c) All rights reserved by ACHK

考慮次序與否 2.1

這段改編自 2010 年 6 月 15 日的對話。

初學機會率的其中兩個最大難處是,要釐清「什麼時候要考慮次序」和「怎樣為之『相同情況』」,例如:

我們再考慮另一個例子:

有一個袋子,內裡有十張卡紙。每張卡紙上,都寫上了一個英文字母。那十個字母分別是「AAABBBCCCC」,即是三個 A、三個 B 和 四個 C。你將要抽其中三個字母出來。被抽出來的卡紙,不會放回袋中。

假設整個過程是隨機的,即是各個可能性的機會均等。問題是,你抽中「兩 A 一 B」的機會率是多少?

P 方法:

總共要抽三個字母:

(_)(_)(_)

抽第一個時,總共有十個字母,而你想要的 A,則有三個。所以,第一個機會率分數是十分之三(3/10)。

(3/10)(_)(_)

抽第二個時,總共餘下九個字母,而你想要的 A,則還有兩個。所以,第二個機會率分數是九分之二(2/9)。

(3/10)(2/9)(_)

最後,總共餘下八個字母,而你想要的 B,則有三個。所以,第三個機會率分數是八分之三(3/8)。

(3/10)(2/9)(3/8)

暫時的結論是,抽到 A A B 的機會率是 1/40。

(3/10)(2/9)(3/8)

= 1/40

在用「S 方法」驗算前,我們先考慮,我們需不需要,再額外考慮「次序問題」呢?

需要,因為剛才那幾個機會率分數,只包括了 A A B,即是「頭兩個是 A 而最尾一個是 B」的情況。那並不是題目的設定。題目並沒有要求三個之中,哪一個是 B。所以,還有其他情況需要考慮:

(A)(A)(B)

(A)(B)(A)

(B)(A)(A)

(HYC:這一題很明顯是只有三種情況。但是,當題目不是那麼簡單,數字不是那麼小,而是要我選(例如)「四 C 三 A」時,我怎樣保證,可以羅列所有相關的情況,沒有遺漏?)

你可以這樣想:

(_)(_)(_)

三格之中,你要放一個是 B,有多少方法呢?

很明顯,有 3_C_1 種可能。3_C_1 即是「3 選 1」,等於 3。所以,你只要將剛才的中途結果乘以 3,就可以得到最終答案。

(3/10)(2/9)(3/8)3_C_1

=(1/40)3

= 3/40

結論是,抽到「兩 A 一 B」的機會率是 3/40。

(HYC:我明白為何共有 3_C_1 種情況。但是,我不明白,為何只要將 3_C_1 乘上其中一個案例的機會率,就可以得到整體的機會率。)

你的憂慮是合理的。實情是,那 3_C_1 種情況,是三種不同的處境,需要各自計算,然後把它們相加,來得出整體的機會率。

(A)(A)(B)=(_)(_)(_)

(A)(B)(A)=(_)(_)(_)

(B)(A)(A)=(_)(_)(_)

剛才運算過,「(A)(A)(B)」的機會是 1/40。

(A)(A)(B)=(3/10)(2/9)(3/8)= 1/40

(A)(B)(A)=(_)(_)(_)

(B)(A)(A)=(_)(_)(_)

而第二種情況「(A)(B)(A)」,抽到第一張是 A 的機會是 3/10,因為十張卡紙中,有三張是 A;抽第二張是 B 的機會是 3/9,因為餘下的九張卡紙中,有三張是 B;抽第三張是 C 的機會是 2/8,因為餘下的八張卡紙中,還剩兩張是 A。

(A)(A)(B)=(3/10)(2/9)(3/8)= 1/40

(A)(B)(A)=(3/10)(3/9)(2/8)

(B)(A)(A)=(_)(_)(_)

類似地,第三種情況「(B)(A)(A)」的機會是(3/10)(3/9)(2/8)。

(A)(A)(B)=(3/10)(2/9)(3/8)= 1/40

(A)(B)(A)=(3/10)(3/9)(2/8)

(B)(A)(A)=(3/10)(3/9)(2/8)

理論上,三種情況要各自計算,從而會有三道不同的算式。但是實際上,你會發覺三道不同算式,會有相同的結果,都是 1/40。

(A)(A)(B)=(3/10)(2/9)(3/8)= 1/40

(A)(B)(A)=(3/10)(3/9)(2/8)= 1/40

(B)(A)(A)=(3/10)(3/9)(2/8)= 1/40

所以,剛才的講法「只要把『(A)(A)(B)』的機率乘以 3_C_1,就可以得以整體結果」,雖然概念上「有點不負責任」,但實際上,會得到正確的最終答案。

還有,很多時候,那是必須的捷徑。例如,如果題目問你「從『AAABBBCCCC』中,抽出七個字母,抽到『兩 A、兩 B 和 三 C』的機會是多少」,你就總共有 210 種情況要各自考慮、個別運算,除非你願意使用捷徑。

— Me@2013.01.24

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.25 Friday (c) All rights reserved by ACHK

考慮次序與否 1.2

這段改編自 2010 年 6 月 15 日的對話。

初學機會率的其中兩個最大難處是,要釐清「什麼時候要考慮次序」和「怎樣為之『相同情況』」,例如:

有一個袋子,內裡有十張卡紙。每張卡紙上,都寫上了一個英文字母。那十個字母分別是「AAABBBCCCC」,即是三個 A、三個 B 和 四個 C。你將要抽其中三個字母出來。被抽出來的卡紙,不會放回袋中。

假設整個過程是隨機的,即是各個可能性的機會均等。問題是,你抽中三個都是 A 的機會率是多少?

P 方法:

S 方法:

我們先考慮所有可能結果的總數,放於分母;然後,再考慮可以接受的結果有多少,放於分子。

(_)
(   )

總共有 10 字母,選 3 個出來,所以共有 10_C_3 個可能。(10_C_3)即是 「10 選 3」,等於 120。

(____)
(10_C_3)

而眾多可能的結果中,我們接受的,是「三個都是 A」的情況。換句話說,即是要從三個 A 中,選三個出來;從三個 B 中,選零個出來;和從四個 C 中,選零個出來。

(3_C_3)(3_C_0)(4_C_0)
____________ 
          (10_C_3)

   (1)(1)(1)
= _____ 
      (120)

結論是,抽到三個 A 的機會率是 1/120。

(1)(1)(1)
_____ 
   (120)

= 1/120

答案和 P 方法的結果相同,即是正確的機會很大。

— Me@2013.01.22

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.22 Tuesday (c) All rights reserved by ACHK

考慮次序與否 1.1

這段改編自 2010 年 6 月 15 日的對話。

初學機會率的其中兩個最大難處是,要釐清「什麼時候要考慮次序」和「怎樣為之『相同情況』」,例如:

有一個袋子,內裡有十張卡紙。每張卡紙上,都寫上了一個英文字母。那十個字母分別是「AAABBBCCCC」,即是三個 A、三個 B 和 四個 C。你將要抽其中三個字母出來。被抽出來的卡紙,不會放回袋中。

假設整個過程是隨機的,即是各個可能性的機會均等。問題是,你抽中三個都是 A 的機會率是多少?

P 方法:

總共要抽三個字母:

(_)(_)(_)

抽第一個時,總共有十個字母,而你想要的 A,則有三個。所以,第一個機會率分數是十分之三(3/10)。

(3/10)(_)(_)

抽第二個時,總共餘下九個字母,而你想要的 A,則有兩個。所以,第二個機會率分數是九分之二(2/9)。

(3/10)(2/9)(_)

類似地,第三個機會率分數是八分之一(1/8)。

(3/10)(2/9)(1/8)

結論是,抽到三個 A 的機會率是 1/120。

(3/10)(2/9)(1/8)

= 1/120

在用「S 方法」驗算前,我們先考慮,我們需不需要,再額外考慮「次序問題」呢?

(HYC:你的意思是,你只考慮了,抽到「AAA」這個籠統的情況。但是「A」其實有三個,所以會形成六種可能性。

方便起見,我叫第一個 A 做「A1」、第二個 A 做「A2」和 第三個 A 做「A3」。那六種可能的結果是:

(A1)(A2)(A3)

(A1)(A3)(A2)

(A2)(A1)(A3)

(A2)(A3)(A1)

(A3)(A1)(A2)

(A3)(A2)(A1)

那樣,我們需不需要再把,以上的結果乘以 6 呢?)

不需要,因為剛才那幾個機會率分數,其實已內置了次序的考慮:

3/10)(2/9)(1/8)

正正是因為第一張被抽出來的卡紙,無論是 A1、A2 還是 A3 都可以接受,第一個機會率分數的分子才會是 3。你那種結果,正正是分子的(3 x 2 x 1)。

3/10)(2/9)(1/8)

= 6/720

— Me@2013.01.20

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.20 Sunday (c) All rights reserved by ACHK

對稱情境 1.2

這段改編自 2010 年 6 月 15 日的對話。

有兩個袋。每個袋中都有十張卡紙,而每張卡紙上,都有由 1 到 10 的其中一個數字,沒有重複。現在,甲要由第一個袋中,抽一張卡紙出來。而乙則要在另一個袋中,抽另一張卡紙出來。假設整個過程是隨機的,即是各個可能性的機會均等。

如果甲的數字大過乙,那就為之「甲勝」。如果乙的數字大過甲,那就為之「乙勝」。已知「甲勝」的機會率是 q。問題是,「甲乙打和」的機會是多少?

甲乙所面對的情境,完全相同,所以「甲勝」和「乙勝」的機會率,不會有分別。這種「情境相同」的情況,學名叫做「對稱」。

(CYM:為何沒有分別?)

這裡有兩點需要明白。第一點是,何謂「對稱情境」。第二點是,為何「對稱情境」會導致「甲乙的機會率相同」。

第二點「只能意會 不能言傳」。如果你不是立刻感受到,我亦很難透過直接的解釋,令到你明白。我唯有詳細一些,解釋第一點的「何謂對稱情境」,從而間接令你感受到第二點的「為何機會率相同」。

你現在先試試站在甲的立場,體會一下他感受到什麼。他看的是:

自己的袋中有 1 到 10 的十張卡紙。而對方的袋中,又同樣有 1 到 10 的十張卡紙。如果我抽到的卡紙,數字比對方的大,我就獲勝。

然後,你再站在乙的立場,體會一下他又感受到什麼。他看的是:

自己的袋中有 1 到 10 的十張卡紙。而對方的袋中,又同樣有 1 到 10 的十張卡紙。如果我抽到的卡紙,數字比對方的大,我就獲勝。

你會發覺,甲乙的處境一模一樣,隻字不差。同一個處境,就會有同一個結果。(那就是「科學」的意思。)所以,「甲勝」和「乙勝」的機會必定相同。

— Me@2013.01.17

2013.01.17 Thursday (c) All rights reserved by ACHK

對稱情境 1.1

這段改編自 2010 年 6 月 15 日的對話。

有兩個袋。每個袋中都有十張卡紙,而每張卡紙上,都有由 1 到 10 的其中一個數字,沒有重複。現在,甲要由第一個袋中,抽一張卡紙出來。而乙則要在另一個袋中,抽另一張卡紙出來。假設整個過程是隨機的,即是各個可能性的機會均等。

如果甲的數字大過乙,那就為之「甲勝」。如果乙的數字大過甲,那就為之「乙勝」。已知「甲勝」的機會率是 q。問題是,「甲乙打和」的機會是多少?

整個遊戲只有三個可能的結果 ── 「甲勝」、「乙勝」 或者 「打和」 ── 而它們是互斥事件。所以,

P(甲勝)+ P(打和)+ P(乙勝)= 1

因為「甲勝」的機會是 q,而甲乙所面對的情境,又完全相同,所以「乙勝」的機會和「甲勝」一樣,都是 q。

q + P(打和)+ q = 1

P(打和)= 1 – 2q

結論是,「甲乙打和」的機會率是(1 – 2q)。

— Me@2013.01.13

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.13 Sunday (c) All rights reserved by ACHK

抽兩個數

這段改編自 2010 年 6 月 15 日的對話。

假設有兩個袋。每個袋中都有十張卡紙,而每張卡紙上,都有一個由 1 到 10 的其中一個數字,沒有重複。現在,你要由每個袋中,隨機抽一張卡紙出來。換句話說,各個可能性的機會均等。問題是,你抽到兩個相同數字的機會率是多少?

P 方法:

總共要抽兩個數字:

(_)(_)

第一個數字,什麼也可以接受,所以機會率分是一。

(1)(_)

第二個數字,則要同第一個數字吻合,而十個數字中,只有一個和第一個相同。所以,第二格的機會率是十分之一(1/10)。

(1)(1/10)

結論是,抽到兩個相同數字的機會率是 1/10。

(1)(1/10)= 1/10

S 方法:

我們先考慮所有可能結果的總數,放於分母;然後,再考慮可以接受的結果有多少,放於分子。

(_)
(   )

總共要抽兩個數字。每個數字各自有十個可能性。所以,整體有(10 x 10)個可能結果。

(___)
(10)(10)

而眾多可能之中,只有十組是可以接受的,包括(1,1)、(2,2)……(10,10)。所以,分子是十(10)。

 (10)
____
(10)(10)

結論是,抽到兩個相同數字的機會率是 1/10。

 (10)
____
(10)(10)

= 1/10

— Me@2013.01.10

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2013.01.11 Friday (c) All rights reserved by ACHK

機會率哲學 5

Interpretations of probability | Tree diagram 2

For a fraction representing a probability, the denominator is the known.

In a tree diagram, the starting point is the known.

conditional probability

= changing the denominator

= changing the starting point of a tree diagram

— Me@2012.12.07

2012.12.09 Sunday (c) All rights reserved by ACHK