淘汰賽 2.2

這段改編自 2010 年 6 月 8 日的對話。

假設有一個乒乓球淘汰賽,共有八人參加。換句話說,有四場初賽,淘汰四個參賽者。餘下的四個進入準決賽。初賽時的比賽對象,由抽籤隨機決定,即是各個可能性的機會均等。

另外,每人在每場勝利的機會相同,都是二分之一。

問題是,其中兩個參賽者 A 和 B,在第二輪比賽,即是準決賽,相遇的機會率有多少?

             (_)  (_)                決賽  

     (_)  (_)        (_)  (_)       準決賽

(_)(_)  (_)(_)  (_)(_)  (_)(_)   初賽

第一對  第二對  第三對  第四對

P 方法:

S 方法:

我們先考慮所有可能排列的總數,放於分母;然後,再考慮可以接受的排列有多少,放於分子。

(_)
(   )

準決賽總共有 8 個可能的參加者, 4 個位置,所以共有 8P4 個可能的排列。(8P4)即是 「8 排 4」,等於 1680。

(__)
(8P4)

而眾多可能的排列中,我們接受的是 A B 對賽的情況,總共有 4 類。

(A)(B)  (_)(_)

(B)(A)  (_)(_)

(_)(_)  (A)(B)

(_)(_)  (B)(A)

所以,分子先有一個(4)的因素。

  (4)
___
(8P4)

另外,餘下有 6 個可能的參加者,兩個位置,所以共有 6P2 個可能的排列。所以,分子再有一個(6P2)。

(4)(6P2)
____
  (8P4)

結論是, A 和 B 在準決賽相遇的機會是 1/14。

(4)(30)
____
 (1680)

= 1/14

答案和 P 方法的結果相同,即是正確的機會很大。

— Me@2012.10.22

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2012.10.22 Monday (c) All rights reserved by ACHK

Digital physics, 7

The events in spacetime are not symmetric. The causal structure could never quite emerge from such a starting point. More obviously, the symmetry between the events – points of the graph – creates the impression that the spacetime in quantum gravity may be discrete but it remains fundamental.

The last decade in theoretical physics has simply settled this question – whether someone likes it or not – and the answer is “No”. The spacetime geometry cannot be fundamental at the Planck scale. It is subject to transitions, dualities, and holography, among other phenomena that prove that it must be flexible and it cannot arise from a graph because a graph is too local. In neither of the existing descriptions we can find a discrete spacetime and it seems rather unlikely that there exists a description where it is discrete.

— Lubos Motl

2012.10.22 Monday ACHK