淘汰賽 1.1

這段改編自 2010 年 6 月 8 日的對話。

假設有一個乒乓球淘汰賽,共有八人參加。換句話說,有四場初賽,淘汰四個參賽者。餘下的四個進入準決賽。初賽時的比賽對象,由抽籤隨機決定,即是各個可能性的機會均等。問題是,其中兩個參賽者 A 和 B,在初賽相遇的機會率有多少?

P 方法:

初賽共有 8 格參賽位置,即是 4 對。

(_)(_)  (_)(_)  (_)(_)  (_)(_)

我們假想先放 A、B 的其中一個,例如 A,在適當的位置。然後,再放 B 於適當的位置。

(_)(_)

只要把兩個機會率相乘,就代表 A 和 B 都在適當位置的機會。

首先,第一個人放在哪個位置都可以,所以第一個人的位置一定會適當,機會率是一(1)。亦即是話,對於第一個人來說,有 8 個可能的位置,而 8 個都可以接受,所以機會率是八分之八(8/8)。

(1)(_)

然後,對於第二個人來說,有 7 個可能的位置,而只有 1 個可以接受。亦即是話,如果 A 已經選定比賽位置,而 B 又要和 A 於初賽相遇的話, B 就只有一個選擇,所以 B 在適當位置的機會率是七分之一(1/7)。

(1)(1/7)

結論是, A 和 B 在初賽相遇的機會是 1/7。

(1)(1/7)= (1/7)

S 方法:

— Me@2012.10.17

致讀者:如發現本文有思考漏洞,或者運算錯誤,請以電郵告知本人。謝謝!

— Me@2012.10.17

2012.10.17 Wednesday (c) All rights reserved by ACHK